Анализ зависимости
 

Как показывает опыт затухание оказывает незначительное влияние на движение оптического электрона, если частота световой волны не равна ω0 - собственной частоте колебаний электрона. Точнее, затуханием можно пренебречь, если

.

При выполнении этого условия

.

В первом случае (если ω < ω0) колебания электрона происходят в фазе с вынуждающей силой, Cosφ = 1. Во втором (ω > ω0) - в противофазе, Cosφ = -1.

Учитывая это можно записать упрощенное выражение для n2, применимое для частот далеких от ω0: Пределы Математика Примеры решения задач

.

Здесь знак второго слагаемого при ω < ω0 положителен, при ω > ω0 второе слагаемое отрицательное.

Для ω = ω0   φ = π/2, а Cosφ = 0, тогда, возвращаясь к исходному выражению для n2 (20.1.1.3), получим:

n = 1.


 

21.1.1.5. График зависимости n(ω)

Проведенный анализ позволяет изобразить примерный вид графика зависимости показателя преломления от циклической частоты:

На участках AB и DEn растет с ростом ω - дисперсия нормальная. На участке BCD дисперсия аномальная - с ростом показатель преломления падает.


21.1.1.2.6. График зависимости n(λ)

Так как длина волны λ и циклическая частота величины, связанные обратно пропорциональной зависимостью (15.1.8), то график n(λ), соответствующий приведенному выше графику, будет иметь примерно следующий вид:

.


21.1.1.2.7. Учет колебаний с другими собственными частотами

В веществе могут быть заряды, колеблющиеся с различными собственными частотами ω0 и затуханиями βi, величины зарядов qi могут быть разными, разными могут быть и их массы. С учетом этого формула для n2 примет следующий вид:

.

График зависимости n(ω) при наличии двух собственных частот (N = 2) будет иметь следующий вид:

Опыт подтверждает такой ход зависимости n(ω).


21.2. Групповая скорость

На графике зависимости n(λ), изображенном в 21.1.1, есть участок CDE, где n < 1. Это означает, что фазовая скорость световой волны:

      на участке CDE.

На первый взгляд это утверждение противоречит теории относительности (см. раздел 8), согласно которой скорость света в вакууме является максимально возможной скоростью передачи сигнала. Но монохроматическая волна не может передавать сигнал: она никогда не кончается и нигде не начинается. Такая волна состоит из бесконечно повторяющихся одинаковых горбов и впадин, ничем не отличающихся друг от друга. Передавать сигнал можно только ограниченным в пространстве и во времени кусочком электромагнитной волны - электромагнитным импульсом. Такой импульс (группа волн) можно представить в виде наложения бесконечного числа монохроматических волн с разными частотами и амплитудами (интеграл Фурье).

Мы, для простоты будем представлять импульс (группу волн) совокупностью двух близких по частоте монохроматических волн:

Здесь мы во втором сомножетеле пренебрегаем величинами Δω и Δk по сравнению с ω и k.

Выражение стоящее в квадратных скобках медленно меняется в пространстве и во времени, т. к. Δω << ω, Δk << k (сравните с 14.3.3). Обозначим его буквой A,

.

Тогда можно считать, что наш импульс (группа волн) - это монохроматическая волна с медленно меняющейся амплитудой:

.

Будем следить за распространением в пространстве точки xm, где амплитуда A максимальна. Назовем групповой скоростью u скорость перемещения в пространстве точки с координатой xm:

.

Максимуму A соответствует обращение в ноль фазы косинуса в выражении для A, т.е.

.

Возьмем производную по времени от этого выражения, в результате получим:

,

откуда

.

Переходя к пределу, получим окончательное выражение для групповой скорости:

.

 


21.2.1. Связь групповой скорости u с фазовой скоростью v

Заменим в полученном только что выражении для групповой скорости круговую частоту ω через v·k (см. 15.2.4), тогда:

.

Выразим производную dv/dk через производную dv/dλ :

.

Так как

,          см. (15.2.4),

то

.

В результате получим для групповой скорости следующее выражение:

.

Если (нормальная дисперсия), то u < v, это область, где показатель преломления n убывает с ростом λ.

Если (аномальная дисперсия), то u > v.

Но в области аномальной дисперсии понятие групповой скорости теряет смысл из-за большого поглощения света.

Крестовина маятника Обербека крепится на втулке, насаженной на горизонтальную ось, закрепленную в подшипниках. Момент инерции устройства можно изменять, передвигая вдоль стержней грузы на различные расстояния R от оси вращения. Расстояние h , проходимое платформой с перегрузком, определяется по миллиметро-вой шкале как разность положения нижнего среза платформы в момент окончания и в мо-мент начала отсчета времени. Время измеряется миллисекундомером. Отсчет времени начинается одновременно с выключением питания электромагнита, удерживающего крестовину в состояние покоя.