Учебник по атомной и ядерной физике

fihelp.ru
Волновая оптика
Волновое движениеУравнение плоской волныПринцип ГюгенсаИнтерференция светаИнтерференция в тонких пленкахДифракция светаПоляризация светаИнтерференция поляризованных лучей
Квантовая оптика
Закон КиpхгофаГипотеза ПланкаФотоэффектЭффект КомптонаЭффект ДоплеpаИзлучение света атомами.Лазеpы
Квантовая механика
Пpинцип неопpеделенностиУpавнение ШpедингеpаСтационаpные состояния
Атомная физика
  • Атом водоpода
  • Пpинцип тождественности частиц
  • Стpоение многоэлектpонных атомов
  • Спектpы излучения атомов
  • Нуклоны
  • Энеpгия связи ядеp.
  • Альфа и гамма-pаспад
  • Каталог готовых работ
  • Ядерная физика
  • Ядеpные pеакции.
  • Деление ядеp
  • Цепная pеакция
  • Теpмоядеpные pеакции
  • InDesign
    Общие сведения
    Графический пакет AutoCAD
    Рисование средствами InDesign
    Подготовка публикации
    Установки программы InDesign
    Цвет и его применение
    Управление цветом
    Импорт графики
    Форматирование абзацев
    Глобальное форматирование
    Импорт и размещение текста
    Создание новой публикации
    Компоновка текста и графики
    Электронные публикации
    Примеры
    Вывод оригинал-макета
    PageMaker
  • Работа с текстом и графикой
  • Верстка Работа с цветом
  • Оригинал макет
  • Развитие Flash-технологий
  • Новые возможности
  • Введение в технологию
  • Основы работы
  • Работа с отдельными объектами
  • Рисование
  • Работа с цветом и текстом
  • Анимация Слои
  • Редактирование символов
  • Создание и публикация фильма
  • Электротехника
  • Магнитный поток
  • Электромагнитная индукция
  • Взаимная индукция.
  • Коэффициент связи
  • Электромагнитная сила
  • Напряженность
  • Ферромагнетики.
  • Расчет магнитных цепей
  • Топологические параметры цепи
  • Источники электрической энергии
  • Эквивалентные преобразования
  • Закон Ома
  • Законы Кирхгофа
  • Пассивные элементы
  • Сдвиг фаз между током и напряжением.
  • Мощность цепи
  • Источники электрической энергии
  • Треугольники напряжений
  • Последовательное и параллельное соединения
  • Явление резонанса
  • Символический метод расчета
  • Векторные диаграммы
  • Трехфазные цепи
  • Несинусоидальные токи
  • Катушка с ферромагнитным сердечником
  • Строение и общие свойтва атомных ядер
     1.1. Протонно-нейтронная структура ядра.
     1.2. Заряд ядра
     1.3. Масса ядра и масса атома
     1.4. Энергия связи ядра
     1.5. Размер ядра
     1.6. Спин, магнитный и электрический моменты ядер
     1.6.1 Магнитный момент ядра
     1.6.2 Электрический момент ядра
     1.7. Возбужденные состояния ядер
     1.8. Четность
     1.9. Ядерные силы
     1.10. Изотопический спин
     1.11. Статистика Статистика – коллективное свойство системы взаимодействующих частиц, связанное с неразличимостью частиц и вероятностным характером описания состояний системы в квантовой механике. Определение этого понятия будет дано ниже. Статистика проявляется для систем, состоящих из не менее двух одинаковых микрочастиц. Одинаковые микрочастицы имеют равные массы, электрический заряд, спин и другие характеристики, с помощью которых отличают микрочастицы одного сорта от микрочастиц другого сорта. Нельзя пронумеровать микрочастицы одной природы, чтобы можно было следить за движением каждой из них вдоль соответствующей траектории, уже хотя бы потому, что понятие траектории в квантовой теории теряет смысл. Поэтому вводится понятие тождественности частиц, согласно которому все одинаковые частицы, образующие данную квантовомеханическую систему, оказываются абсолютно неразличимыми. Если в системе тождественных частиц поменять местами две частицы, то перестановка частиц не приведет ни к каким изменением в состоянии системы и не может быть экспериментально обнаружена. Следовательно, на первой стадии методом последовательного соединения основных частей системы или подсистем может быть создана пространственная композиционная структура проектируемого объекта. Постоянный электрический ток Курс лекций по физике

    Модели атомных ядер

     2.1. Необходимость и классификация моделей
     2.2. Капельная модель
     2.3. Оболочечная модель

    Ядра, содержащие магическое число нейтронов или протонов, т.е. 2, 8, 20, 50, 82, 126 (только для нейтронов), обладают повышенной удельной энергией связи по сравнению с «соседними» ядрами, являются сферически симметричными (имеют нулевой электрический квадрупольный момент), имеют большую распространенность в природе. Нуклиды с магическими ядрами имеют наибольшее число стабильных изотопов и изотонов. Ядра с магическими числами N поглощают нейтроны с вероятностью, меньшей в 10 ÷ 100 раз, чем ядра с близкими значениями N. Периодичность изменения этих и ряда других свойств ядер при изменении A и Z напоминает периодическое изменение свойств атомов от числа содержащихся в них электронов. Это наводит на мысль о наличии в ядрах устойчивых заполненных оболочек подобно тому, как это имеет место в атомах, где магическими являются числа 2, 10, 18, 36, 54, 86 для электронов в заполненных оболочках инертных газов. В обоих случаях физической причиной периодичности является принцип  Паули (см. §1.11).

    Современная модель атома строится в предположении о независимом (от других электронов) движении электрона в центральном электрическом поле. Поэтому можно предположить, что периодичность в свойствах ядер удастся объяснить в модели независимых частиц. Но ядро состоит из сильно взаимодействующим между собой нуклонов и, в отличие от модели атома, сама идея модели независимых частиц на первый взгляд представляется спорной.

    Радиоактивные превращения ядер
     3.I. Определение, виды радиоактивности, радиоактивные семейства
     3.2. Основные законы радиоактивного распада
     3.3. Активация
     3.4. Альфа – распад
     3.5. Бета – распад
     3.6. Гамма – излучение ядер

    Гамма излучение (g‑излучение) - испускание кванта электромагнитного излучения при спонтанном переходе ядра с более высокого

    энергетического уровня на любой нижележащий. Очевидно, что в этом случае А и Z ядра не изменяются. В отличие от рентгеновских и квантов видимого света, испускаемых при переходах атомных электронов, фотоны, испускаемые ядрами, называются g-квантами, хотя для обозначения квантов любого происхождения сохраняется обобщающее название фотон. Излучение g-кванта является основным процессом освобождения ядра от избыточной энергии, при условии, что эта энергия не превосходит энергию связи нуклона в ядре. Таким образом, по своей физической природе g-квант - это порция энергии Eg =  электромагнитного поля. Переходы, при которых испускаются g-кванты, называются радиационными. Радиационный переход может быть однократным (переход γ20 на рис. 3.6.1), когда ядро сразу переходит в основное энергетическое состояние, или каскадным, когда происходит испускание нескольких g-квантов в результате ряда последовательных радиационных переходов

    Ядерные реакции

     4.1.Основные понятия и классификация
     4.2. Механизм ядерных реакций
     4.3. Сечения ядерных реакций
    4.4. Законы сохранения в ядерных реакциях
    4.5. Импульсная диаграмма и кинематика ядерных реакций
     4.6. Реакции под действием заряженных частиц
     4.7. Термоядерный синтез
     4.8. Фотоядерные реакции
     4.9. Реакции под действием нейтронов

    В начале 1930 г. было установлено, что при бомбардировке a-частицами бериллия (входной канал реакции (4.6.9)) возникает сильно проникающее излучение, которому, если предположить что это γ-излучение, следовало приписать энергию Еγ ≈ 50 МэВ по экспериментально измеренной кинетической энергии протонов отдачи и ослаблению излучения в свинце. Такую большую энергию нельзя было согласовать с энергетическим балансом реакции. Чеддвик (1932 г.) поставил опыты, которые позволили хорошо объяснить свойства загадочного излучения, предположив, что оно представляет собой поток нейтральных частиц с массой покоя, примерно равной массе протона (см. ниже). Открытая Чедвиком частица уже имела свое название - нейтрон. Предположение о существовании в составе ядра нейтрона допускалось Резерфордом задолго до опытов Чедвика и еще в 1920 г. в своей бейкеровской лекции им были описаны основные свойства нейтрона. Тогда же им было предложено и его название.

    Электрический заряд нейтрона с огромной точностью (~ 1020е) равен нулю. Несмотря на это, нейтрон имеет магнитный момент μ = -1,91 ядерного магнетона Бора, что свидетельствует о его внутренней структуре (см. §1.9 п.8). Из-за отсутствия электрического заряда нейтроны не участвуют в кулоновском взаимодействии ни с атомными электронами, ни с ядрами. А так как размеры ядер ~ в 10-4 раз меньше размеров атомов, то столкновения нейтронов с ядрами происходит значительно реже, чем заряженных частиц с атомами, и пути нейтронов между двумя последовательными столкновениями с ядрами составляют в конденсированных средах 1 – 10 см.

    Деление ядер
     5.1. Открытие и капельная модель
     5.2. Основные свойства деления
     5.3. Цепная реакция деления

    Возникновение вторичных нейтронов в процессе деления тяжелых ядер нейтронами позволяют осуществить процесс цепной реакции деления. Цепной процесс характерен тем, что в его основе лежит экзоэнергетическая реакция, возбуждаемая нейтроном, которая порождает вторичные нейтроны. В этом случае появление нейтрона в делящейся среде вызывает цепь следующих друг за другом реакций деления, которая продолжается до обрыва вследствие потери нейтрона – носителя процесса. Основных причин потерь две: поглощение нейтрона ядром без испускания вторичных (например, радиационный захват) или уход нейтрона за пределы объема вещества (называемый активной зоной), в котором протекает цепной процесс деления. Если в результате реакции возникает более одного нейтрона, которые в свою очередь вызывают деление, то такая реакция является разветвленной реакцией. Средняя длина пробега нейтрона от точки рождения до точки, в которой нейтрон производит деление, является макроскопической величиной. Поэтому цепная реакция деления является макроскопическим процессом. Каждый нейтрон, участвующий в цепном процессе, проходит цикл обращения: рождается в реакции деления, некоторое время существует в свободном состоянии, затем либо теряется, либо порождает новый акт деления и дает нейтроны следующего поколения. Нейтрону необходимо, хотя и малое, но конечное время для прохождения через цикл обращения. Среднее время τ, полученное усреднением по большому числу нейтронных циклов деления, называется временем нейтронного цикла или среднимвременем жизни нейтронов.

    Быстрое развитие информационных технологий на предприятиях, обусловлено необходимостью повышения конкурентоспособности производимой продукции, как на внутреннем, так и на мировом рынке. Снижение трудоемкости в производственных цехах, технологических операциях достигается за счет внедрения современных способов ведения и управления производственными процессами.
    Ручное управление производственными процессами не приносит ожидаемого эффекта. Поэтому требуется автоматизация производства, особенно на крупных предприятиях, имеющих длинные и сложные производственные цепочки. Можно дополнительно отметить, что повышение производительности при конвейерном производстве, так же как и в любом другом производстве, является одним из действенных способов увеличения прибыли предприятия. Другим способом уменьшения себестоимости продукции и, как следствие, повышение конкурентоспособности продукции, а так же прибыли от продукции, является уменьшение затрат. В век информационных технологий, механический труд заменяется электронно-механическими системами. В данной дипломной работе представлена основная часть разработки такой системы управления.
    На предприятии ОАО «Екатеринбургский виншампанкомбинат» производство шампанского, как и других видов алкогольной промышленности, происходит на автоматизированном конвейере. Уровень автоматизации в настоящий момент недостаточно высокий, так как для работы конвейера требуется обслуживающий персонал для постоянного управления и регулирования процесса работы и, так как этим управлением занимается человек, то в этой ситуации появляется «человеческий фактор», который ухудшает качество работы, уменьшает производительность и повышает брак. На сегодняшний момент количество брака по требованиям и нормам составляет: брак при производстве 1.3% и брак готовой продукции 1.7%, т.е. всего 3%, а практически на предприятии происходит в среднем 4.3% брака от всей продукции, т.е. нормы не соблюдается. Для уменьшения количества брака, увеличения производительности конвейера, было предложено создать автоматизированную систему управления и регулирования, которая так же еще и уменьшит затраты на производство и сократит штат обслуживающего персонала.
     
    Автозапчасти на иномарок, origa.