Сущность операторного метода заключается в том, что функции вещественной переменной t, которую называют оригиналом, ставится в соответствие функция комплексной переменной , которую называют изображением. В результате этого производные и интегралы от оригиналов заменяются алгебраическими функциями от соответствующих изображений (дифференцирование заменяется умножением на оператор р, а интегрирование – делением на него), что в свою очередь определяет переход от системы интегро-дифференциальных уравнений к системе алгебраических уравнений относительно изображений искомых переменных. При решении этих уравнений находятся изображения и далее путем обратного перехода – оригиналы. Важнейшим моментом при этом в практическом плане является необходимость определения только независимых начальных условий, что существенно облегчает расчет переходных процессов в цепях высокого порядка по сравнению с классическим методом. Метод изображений
Метод изображений это способ решения основной задачи электростатики, основанный на подмене исходной конфигурации проводников некоторым другим распределением зарядов, потенциал которого на поверхности проводников и в бесконечности совпадает с граничными условиями исходной задачи. Новая задача, разумеется, должна иметь простое решение. Поскольку решение при данных граничных условиях единственно, то оно является и решением исходной задачи.
Пример: Точечный заряд q находится на расстоянии d от бесконечного проводника, занимающего левое полупространство. Определить поле в правом полупространстве.

Рис. 4.3 Общий заряд точечного проводника задан. Потенциал проводника, уходящего в бесконечность, естественно принять за нуль. Этими условиями решение определяется однозначно. Чтобы найти это решение, предположим, что на продолжении перпендикуляра, опущенного из заряда на поверхность проводника, находится на расстоянии d заряд q' = q (см. рис. 4.3) и затем мысленно уберем сам проводник . Тогда плоскость, совпадавшая ранее с поверхностью проводника, будет обладать требуемым нулевым потенциалом, ибо все точки этой плоскости будут равно отстоять от равных по величине и противоположных по знаку зарядов. Краткая характеристика трансформатора
Стало быть, поле совокупности этих зарядов в правом полупространстве удовлетворяет условиям задачи, из чего на основании того, что решение единственно следует, что поле это в правом полупространстве тождественно искомому полю заряда q и зарядов, индуцированных им на поверхности бесконечного проводника. Таким образом задача сведена к простой задаче двух зарядов. Следует заметить, что внутри проводника E=0, и поле не совпадает с полем заряда и проводника.

Изображение заданной функции определяется в соответствии с прямым преобразованием Лапласа: ЗАДАЧА. Расчет разветвленной цепи постоянного тока с одним источником энергии Условие задачи. В электрической цепи, изображенной на рис. 2.1, определить токи в ветвях, напряжение на зажимах и составить баланс мощности.

(1)

В сокращенной записи соответствие между изображением и оригиналом обозначается, как:

или 

Следует отметить, что если оригинал увеличивается с ростом t, то для сходимости интеграла (1) необходимо более быстрое убывание модуля . Функции, с которыми встречаются на практике при расчете переходных процессов, этому условию удовлетворяют.

В качестве примера в табл. 1 приведены изображения некоторых характерных функций, часто встречающихся при анализе нестационарных режимов.

 

Таблица 1. Изображения типовых функций

  Оригинал

А

  Изображение  

 

Некоторые свойства изображений

  1. Изображение суммы функций равно сумме изображений слагаемых:
  2. .

  3. При умножении оригинала на коэффициент на тот же коэффициент умножается изображение:

.

С использованием этих свойств и данных табл. 1, можно показать, например, что

 

.

 

Изображения производной и интеграла

В курсе математики доказывается, что если , то , где - начальное значение функции .

Таким образом, для напряжения на индуктивном элементе можно записать

или при нулевых начальных условиях

.

Отсюда операторное сопротивление катушки индуктивности

.

Аналогично для интеграла: если , то .

С учетом ненулевых начальных условий для напряжения на конденсаторе можно записать:

.

Тогда

или при нулевых начальных условиях

,

откуда операторное сопротивление конденсатора

.

 

Закон Ома в операторной форме

Пусть  имеем некоторую ветвь  (см. рис. 1), выделенную из некоторой

сложной цепи. Замыкание ключа во внешней цепи приводит к переходному процессу, при этом начальные условия для тока в ветви и напряжения на конденсаторе в общем случае ненулевые.

Для мгновенных значений переменных можно записать:

.

Тогда на основании приведенных выше соотношений получим:

.

Отсюда

(2)

где - операторное сопротивление рассматриваемого участка цепи.

Следует обратить внимание, что операторное сопротивление соответствует комплексному сопротивлению ветви в цепи синусоидального тока при замене оператора р на .

Уравнение (2) есть математическая запись закона Ома для участка цепи с источником ЭДС в операторной форме. В соответствии с ним для ветви на рис. 1 можно нарисовать операторную схему замещения, представленную на рис. 2.

 

Законы Кирхгофа в операторной форме

Первый закон Кирхгофа:  алгебраическая  сумма изображений токов, сходящихся в узле, равна нулю

.

Второй закон Кирхгофа:алгебраическая сумма изображений ЭДС, действующих в контуре, равна алгебраической сумме изображений напряжений на пассивных элементах этого контура

.

При записи уравнений по второму закону Кирхгофа следует помнить о необходимости учета ненулевых начальных условий (если они имеют место). С их учетом последнее соотношение может быть переписано в развернутом виде

.

В качестве примера запишем выражение для изображений токов в цепи на рис. 3 для двух случаев: 1 - ; 2 - .

В первом случае в соответствии с законом Ома .

Тогда

и

.

Во втором случае, т.е. при , для цепи на рис. 3 следует составить операторную схему замещения, которая приведена на рис. 4. Изображения токов в ней могут быть определены любым методом расчета линейных цепей, например, методом контурных токов:

откуда ; и .

 

Переход от изображений к оригиналам

Переход от изображения искомой величины к оригиналу может быть осуществлен следующими способами:

1. Посредством обратного преобразования Лапласа

,

которое представляет собой решение интегрального уравнения (1) и сокращенно записывается, как:

.

На практике этот способ применяется редко.

2. По таблицам соответствия между оригиналами и изображениями

В специальной литературе имеется достаточно большое число формул соответствия, охватывающих практически все задачи электротехники. Согласно данному способу необходимо получить изображение искомой величины в виде, соответствующем табличному, после чего выписать из таблицы выражение оригинала.

Например, для изображения тока в цепи на рис. 5 можно записать

.

Тогда в соответствии с данными табл. 1

,

что соответствует известному результату.

3. С использованием формулы разложения

Пусть изображение искомой переменной определяется отношением двух полиномов

,

где .

Это выражение может быть представлено в виде суммы простых дробей

 (3)

где - к-й корень уравнения .

Для определения коэффициентов умножим левую и правую части соотношения (3) на ( ):

.

При

.

Рассматривая полученную неопределенность типа по правилу Лапиталя, запишем

.

Таким образом,

.

Поскольку отношение есть постоянный коэффициент, то учитывая, что , окончательно получаем

(4)

Соотношение (4) представляет собой формулу разложения. Если один из корней уравнения равен нулю, т.е. , то уравнение (4) сводится к виду

.

В заключение раздела отметим, что для нахождения начального и конечного значений оригинала можно использовать предельные соотношения

которые также могут служить для оценки правильности полученного изображения.

 

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.

Контрольные вопросы

  1. В чем заключается сущность расчета переходных процессов операторным методом?
  2. Что такое операторная схема замещения?
  3. Как при расчете операторным методом учитываются ненулевые независимые начальные условия?
  4. Какими способами на практике осуществляется переход от изображения к оригиналу?
  5. Для чего используются предельные соотношения?
  6. Как связаны изображение и оригинал в формуле разложения? Какие имеются варианты ее написания?
  7. С использованием теоремы об активном двухполюснике записать операторное изображение для тока через катушку индуктивности в цепи на рис. 6.
  8. Ответ: .

  9. С использованием предельных соотношений и решения предыдущей задачи найти начальное и конечное значения тока в ветви с индуктивным элементом.
  10. Ответ: .

масса m материальной точки зависит от скорости по закону а импульс движущейся материальной точки определяется формулой где v - вектор мгновенной скорости материальной точки. Четвертое уравнение, в которое входит , оказывается, выражает уравнение баланса кинетической энергии материальной точки. Чтобы в этом убедиться, умножим уравнения Минковского на и на -, соответственно и сложим. Получим тогда уравнение Отсюда можно найти . Имеем где - мгновенная мощность, развиваемая силой, действующей на рассматриваемую материальную точку. Таким образом, и потому рассматриваемое четвертое уравнение примет вид : Таким образом, величину следует считать энергией движущейся материальной точки.