Основы матричных методов расчета электрических цепей

Рассмотренные методы расчета электрических цепей – непосредственно по законам Кирхгофа, методы контурных токов и узловых потенциалов – позволяют принципиально рассчитать любую схему. Однако их применение без использования введенных ранее топологических матриц рационально для относительно простых схем. Использование матричных методов расчета позволяет формализовать процесс составления уравнений электромагнитного баланса цепи, а также упорядочить ввод данных в ЭВМ, что особенно существенно при расчете сложных разветвленных схем. Семейство протоколов TCP/IP

Переходя к матричным методам расчета цепей, запишем закон Ома в матричной форме.

Пусть имеем схему по рис. 1, где - источник тока. В соответствии с рассмотренным нами ранее законом Ома для участка цепи с ЭДС для данной схемы можно записать:


.(1)

 

Однако, для дальнейших выкладок будет удобнеепредставить ток как сумму токов k-й ветви и источника тока, т.е.:

.(2)

В работе используется сахариметр СУ-3. Принципиальная 'оптическая схема прибора приведена на рис.2.
Свет от источника I, проходя последовательно через светофильтр 2, конденсор 3 и поляризатор Л// (призма Николя), формируется в пучок монохроматических параллельных линейно поляризованных лучей. Второй николь Л^ используется как анализатор. Из сути изучаемого явления понятно, что если первоначально Л/у и Л^ настроены на полное погашение линейно поляризованного света, то после того как между ними будет помечено оптически активное вещество, поле зрения посветлеет. Казалось бы, достаточно измерить
угол, на который надо затем повернуть анализатор, чтобы восстановить темноту, и угол поворота плоскости поляризации определен.

Однако человеческий глаз не может с достаточной точностью отметить положение анализатора, которое соответствует полному затемнению. Поэтому в поляризаторе дополнительно применяется так называемое полутеневое устройство 4, которое позволяет фиксировать не абсолютную освещенность поля зрения, а равенство освещенностей двух его половин, что в силу физиологических особенностей зрения устанавливается гораздо точнее, особенно при малой интенсивности. Полутеневая пластинка 4 состоит из двух половинок (рис. За): стеклянной С и кварцевой К; АВ - граница раздела стекла и кварца.
Если на пластинку падает линейно поляризованный свет с плоскостью колебаний РР, то в той части светового потока, которая пройдет через стекло, плоскость колебаний не изменится (луч I), а в той, что пройдет через кварц (луч 2), -окажется повернутой на некоторый небольшой угол (плоскость Р, Р ). Если оба луча затем пропустить через анализатор, у которого плоскость пропускания N перпендикулярна РР (рис.36), то свет, проходящий через стеклянную половину пластины, будет полностью погашен, а кварцевая половина
будет слабо освещена. Если анализатор расположен так, что его плоскость пропускания N будет перпендикулярна плоскости P Р. то затемненной окажется кварцевая половина, а стекленная-просветленной. Чтобы обе половины поля зрения были освещены одинаково, анализатор надо повернуть таким образом, чтобы плоскости колебаний РР и Р Р составляли одинаковые углы с плоскостью пропускания анализатора. На рис. Зв -это положения N и N . Положение плоскости пропускания N предпочтительнее, так как оно соответствует меньшей освещенности обеих половин поля зрения.

Подставив (2) в (1), получим:

(3)

 

Формула (3) представляет собой аналитическое выражение закона Ома для участка цепи с источниками ЭДС и тока (обобщенной ветви).

Соотношение (3) запишем для всех n ветвей схемы в виде матричного равенства

или

,(4)

 

где Z – диагональная квадратная (размерностью n x n) матрица сопротивлений ветвей, все элементы которой (взаимную индуктивность не учитываем), за исключением элементов главной диагонали, равны нулю.

Соотношение (4) представляет собой матричную запись закона Ома.

Если обе части равенства  (4) умножить слева на контурную матрицу В  и учесть второй закон Кирхгофа, согласно которому

,(5)

 

то

(6)

 

то есть получили новую запись в матричной форме второго закона Кирхгофа.

 

Метод контурных токов в матричной форме

В соответствии с введенным ранее понятием матрицы главныхконтуровВ, записываемой для главных контуров, в качестве независимых переменных примем токи ветвей связи, которые и будут равны искомым контурным токам.

Уравнения с контурными токами получаются на основании второго закона Кирхгофа; их число равно числу независимых уравнений, составляемых для контуров, т.е. числу ветвей связи c=n-m+1. Выражение (6) запишем следующим образом:

(7)

В соответствии с методов контурных токов токи всех ветвей могут быть выражены как линейные комбинации контурных токов или в рассматриваемом случае токов ветвей связи. Если элементы j–го столбца матрицы В умножить соответствующим образом на контурные токи, то сумма таких произведений и будет выражением тока j–й ветви через контурные токи (через токи ветвей связи). Сказанное может быть записано в виде матричного соотношения

(8)

 

где - столбцовая матрица контурных токов;  - транспонированная контурная матрица.

С учетом (8) соотношение (7) можно записать, как:

(9)

 

Полученное уравнение представляет собойконтурные уравнения в матричной форме. Если обозначить

(10)
(11)

 

то получим матричную форму записи уравнений, составленных по методу контурных токов:

(12)

 

где - матрица контурных сопротивлений; - матрица контурных ЭДС.

В развернутой форме (12) можно записать, как:

 ,(13)

 

то есть получили известный из метода контурных токов результат.

Рассмотрим пример составления контурных уравнений.

Пусть имеем схему по рис. 2. Данная схема имеет четыре узла (m=4)и шесть обобщенных ветвей (n=6).Число независимых контуров, равное числу ветвей связи,

c=n-m+1=6-4+1=3.

Граф схемы с выбранным деревом (ветви 1, 2, 3) имеет вид по рис. 3.

Запишем матрицу контуров, которая будет являться матрицей главных контуров, поскольку каждая ветвь связи входит только в один контур. Принимая за направление обхода контуров направления ветвей связи, получим:

В

 

.Диагональная матрица сопротивлений ветвей

Z

 

 

Матрица контурных сопротивлений

Zk=BZBT

 

.

Матрицы ЭДС и токов источников

*

 

Тогда матрица контурных ЭДС

 

.

Матрица контурных токов

.

Таким образом, окончательно получаем:

,

где ; ; ; ; ; ; ; ; .

Анализ результатов показывает, что полученные три уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу контурных токов.

 

Метод узловых потенциалов в матричной форме

На основании полученного выше соотношения (4), представляющего собой, как было указано, матричную запись закона Ома, запишем матричное выражение:

,(14)

 

где - диагональная матрица проводимостей ветвей, все члены которой, за исключением элементов главной диагонали, равны нулю.

МатрицыZ  и  Y взаимно обратны.

Умножив обе части равенства (14) на узловую матрицуАи учитывая первый закон Кирхгофа, согласно которому

(15)

 получим:

. .(16)

Выражение (16) перепишем, как:

.(17)

 

Принимая потенциал узла, для которого отсутствует строка в матрице А, равным нулю, определим напряжения на зажимах ветвей:

(18)

Тогда получаем матричное уравнение вида:

(19)

Данное уравнение представляет собой узловые уравнения в матричной форме. Если обозначить

(20)
(21)

то получим матричную форму записи уравнений, составленных по методу узловых потенциалов:

(22)

 

где - матрица узловых проводимостей; - матрица узловых токов.

В развернутом виде соотношение (22) можно записать, как:

(23)

то есть получили известный из метода узловых потенциалов результат.

Рассмотрим составление узловых уравнений на примере схемы по рис. 4.

Данная схема имеет 3 узла (m=3) и 5 ветвей (n=5). Граф схемы с выбранной ориентацией ветвей представлен на рис. 5.

Узловая матрица (примем )

А

 

Диагональная матрица проводимостей ветвей:

Y,

 

где .

Матрица узловых проводимостей

.

Матрицы токов и ЭДС источников

*

 

. .Следовательно, матрица узловых токов будет иметь вид:

 

.Таким образом, окончательно получаем:

,

где ; ; ; ; .

Анализ результатов показывает, что полученные уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу узловых потенциалов.

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. В чем заключаются преимуществаиспользования матричныхметодоврасчета цепей?
  2. Запишите выражения матрицы контурных сопротивлений и матрицы контурных ЭДС.
  3. Запишите выражения матрицы узловых проводимостей и матрицы узловых токов.
  4. Составить узловые уравнения для цепи на рис. 2.
  5. Ответ:

    .

  6. Составить контурные уравнения для цепи рис. 4, приняв, что дерево образовано ветвями 3 и 4 (см. рис. 5).
  7. Ответ:

    .

    Расщепление энергетических уровней атома под действием магнитного поля. Это объясняется тем, что атом, обладающий магнитным моментом J, приобретает в магнитном поле дополнительную энергию Е=- JBB (25.1),где JB - про-екция магнитного момента на направление поля JB=- BgmJ => Е= BgBmJ (mJ=-J,-J+1,…,J-1,J) Из этой формулы =>, что Энергетический уровень, состояния 2S+1LJ, расщепляется на 2J+1 равноотстоящих подуровня, причем величина расщепления зависит от множителя Ланде, т.е. от квантовых чисел L,S,J данного уровня. До включения поля состояния, отличавшиеся значениями mJ, обладали одинаковой энергией, т.е. наблюдалось вырождение