Расчет статически неопределимых систем

Наука о прочности, жесткости и надежности элементов инженерных конструкций

Расчет затянутого резьбового соединения, нагруженного силой в плоскости стыка

Прямой чистый изгиб стержня

При прямом чистом изгибе в поперечном сечении стержня возникает только один силовой фактор — изгибающий момент Мх (рис. 1). Так как Qy=dMx/dz=0, то Mx=const и чистый прямой изгиб может быть реализован при загружении стержня парами сил, приложенными в торцевых сечениях стержня. Поскольку изгибающий момент Mх по определению равен сумме моментов внутренних сил относительно оси Ох с нормальными напряжениями его связывает выкающее из этого определения уравнение статики

.

Сформулируем предпосылки теории чистого прямого изгиба призматического стержня. Для этого проанализируем деформации модели стержня из низкомодульного материала, на боковой поверхности которого нанесена сетка продольных и поперечных рисок (рис. 2). Поскольку поперечные риски при изгибе стержня парами сил, приложенными в торцевых сечениях, остаются прямыми и перпендикулярными к искривленным продольным рискам, это позволяет сделать вывод о выполнении гипотезы плоских сечений, которая, как показывает решение этой задачи методами теории упругости, перестает быть гипотезой, становясь точным фактом — законом плоских сечений. Замеряя изменение расстояний между продольными рисками, приходим к выводу о справедливости гипотезы о ненадавливании продольных волокон .

З а д а ч а. Через прямую l (l1,l2) провести плоскость ∆, перпендикулярную к плоскости Г (m ∩ n) Р е ш е н и е . Если плоскость содержит в себе перпендикуляр к другой плоскости, то эти плоскости взаимно перпендикулярны. Чтобы провести через прямую l (l1, l2) искомую плоскость, надо из какой-либо точки прямой, например, А(А1;А2), провести перпендикуляр к данной плоскости.

Ортогональность продольных и поперечных рисок до и после деформирования (как отражение действия закона плоских сечений) указывает также на отсутствие сдвигов, касательных напряжений в поперечных и продольных сечениях стержня.



Рис.1. Связь внутреннего усилия и напряжения



Рис.2. Модель чистого изгиба

Таким образом, чистый прямой изгиб призматического стержня сводится к одноосному растяжению или сжатию продольных волокон напряжениями (индекс г в дальнейшем опускаем). При этом часть волокон находится в зоне растяжения (на рис. 2 это—нижние волокна), а другая часть—в зоне сжатия (верхние волокна). Эти зоны разделены нейтральным слоем (п—п), не меняющим своей длины, напряжения в котором равны нулю. Учитывая сформулированные выше предпосылки и полагая, что материал стержня линейно-упругий, т. е. закон Гука в этом случае имеет вид: , выведем формулы для кривизны нейтрального слоя (—радиус кривизны) и нормальных напряжений . Предварительно отметим, что постоянство поперечного сечения призматического стержня и изгибающего момента (Mх=сonst), обеспечивает постоянство радиуса кривизны нейтрального слоя по длине стержня (рис. 3, а), нейтральный слой (п—п) описывается дугой окружности.

Теорема о проекциях скоростей двух точек тела

Из доказанной теоремы вытекает следствие: проекции скоростей концов неизменяемого отрезка на направление этого отрезка равны между собой.

Действительно, так как относительная скорость υOM перпендикулярна к радиусу - вектору ОМ = rOM, то, проектируя обе части векторного равенства (11.95) на направление отрезка ОМ, получим

пp υM(ОМ) = пр υ0(ОМ).

План скоростей

В инженерной практике при определении скоростей точек плоских механизмов пользуются графическим методом, именуемым планом скоростей.

План скоростей — это чертеж, изображающий векторы скоростей точек плоской фигуры в фиксированный момент времени ее движения. Для построения плана скоростей нужно знать величину и направление скорости одной точки и направление скорости второй точкой плоской фигуры. Затем следует применить теорему о нахождении скоростей точек тела при плоско – параллельном движении.

Пусть в некоторый момент времени задана скорость точки А и направление скорости точки В плоской фигуры. Требуется найти величину скорости υВ точки В и скорость υС любой точки С (рис.72, а). Выбирая точку А за полюс, по формуле (ІІ.95) получим

υВ= υА+ υАВ

где скорость υАВ перпендикулярна АВ.

Из произвольного полюса О в выбранном масштабе откладываем вектор Оа= υА (рис. 72, б). Из точки а проводим прямую ab , перпендикулярную АВ, а из полюса – прямую, параллельную направлению искомой скорости точки В до взаимного пересечения в точке b. Вектор Оb представляет собой в выбранном масштабе скорость точки b: Оb= υВ. Вектор ab равен скорости точки В во вращательном движении вокруг точки А, т.е. ab= υАВ. Так как скорость точки С неизвестна ни по величине, ни по направлению, то составим для ее определения два уравнения, выбирая сначала за полюс точку А, а затем – точку В, и применяя формулу (ІІ.95). Получим υС= υА+ υАС, υС= υВ+ υВС , где υАС – перпендикулярна АС и υВС – перпендикулярна ВС. Тогда соответственно из точек а и b проводим прямые, перпендикулярные АС и ВС до взаимного пересечения в точке с (рис. 72, б). Вектор Ос в выбранном масштабе равен скорости точки С: Ос= υС. Соответственно ас= υАС, bc= υВС. Полученная фигура называется планом скоростей. На плане скоростей получается фигура, подобная данной, но повернутая на угол  в сторону вращения рассматриваемой плоской фигуры. Действительно, треугольник abc на плане скоростей подобен треугольнику АВС плоской фигуры. Отношение подобие этих фигур равна величине угловой скорости вращения плоской фигуры, т.е.

или

Рассмотрим призматический стержень в условиях прямого чистого изгиба (рис. 3, а) с поперечным сечением, симметричным относительно вертикальной оси Оу.

Вторым уравнением равновесия статики является, связывающее нормальные напряжения с изгибающим моментом (который легко может быть выражен через внешние силы и поэтому считается заданной величиной).

При расчете балок из хрупких материалов следует различать наибольшие растягивающие max и наибольшие сжимающие напряжения (рис. 6.), которые также определяются по модулю непосредственно и сравниваются с допускаемыми напряжениями на растяжение и сжатие .

Выведенная в случае чистого изгиба стержня формула для прямого поперечного изгиба, вообще говоря, неприменима, поскольку из-за сдвигов, вызываемых касательными напряжениями , происходит депланация поперечных сечении (отклонение от закона плоских сечений).

Согласно первой предпосылке нормальные напряжения определяются уже известным способом, , где —статический момент отсеченной части площади поперечного сечения относительно оси Ох.

Сделаем несколько замечаний, касающихся расчетов на прочность при прямом поперечном изгибе.

Рациональные формы поперечных сечений при изгибе.

Занятия на тему "Выбор материалов для изготовления деталей соединений". В ходе занятий студенты знакомятся с перечнем материалов, применяемых для изготовления деталей различных соединений и учатся определять предельные и допускаемые напряжения.

Высокий уровень нагружения может вызвать разрушение, т. е. разделение тела на части.