Пластические деформации (статическое разрушение)

Наука о прочности, жесткости и надежности элементов инженерных конструкций

Расчет шпоночных и зубчатых соединений. Цель - овладение навыками правильного выбора вида и размеров соединения. Решаемые задачи: подбор и проверочные расчеты шпоночных соединений; подбор и проверочные расчеты зубчатых соединений.

Основные понятия теории надежности конструкций

Постановка задач теории надежности

Согласно ГОСТ 27.002—89 «Надежность в технике. Термины и определения» надежность конструкции есть свойство сохранять во времени способность к выполнению требуемых функций в заданных режимах. Одним из основных понятий Теории надежности конструкций является понятие предельного состояния. Условие прочности по существу есть условие обеспечения прочностной надежности.

Основной особенностью реальных условий эксплуатации машин и конструкций является случайный характер взаимодействия с окружающей средой. Это проявляется в том, что мы не можем достоверно предвидеть все типы внешних нагрузок и их величины, которые могут встретиться в процессе эксплуатации. Кроме того, источником неопределенности могут быть случайные свойства материалов. Например, предельное напряжение , входящее в условие прочности, по своей природе является случайным. Его величина зависит от многих факторов: марки материала, технологии изготовления, размеров детали или конструкции, условий эксплуатации и др. Случайный характер механических свойств материалов наглядно проявляется при испытаниях, обнаруживающих значительный разброс экспериментальных данных. Источник неопределенности связан также с разбросом размеров при изготовлении конструкций: в принципе невозможно выдержать абсолютно точно геометрические параметры конструкции, при их изготовлении допускаются некоторые отклонения.

В случае одномерного напряженного состояния

(1)

напряжение , зависящее от внешних нагрузок, при определенных условиях может принять довольно большое значение, а предельное значение может оказаться малым, так что это неравенство нарушится. Если стечение обстоятельств, приводящее к нарушению условия прочности, редкое событие, то приходим к вероятностной трактовке условия прочности с позиций теории надежности. Вероятностью называется числовая характеристика степени возможности наступления некоторого события в определенных многократно воспроизводимых условиях. Вероятность события А можно оценить на основе опытных данных. Если проводится достаточно большое число опытов N, в которых событие Л появилось NA раз, то можно считать, что вероятность появления этого события равна

P(A)=NА/N.

Вероятность как мера возможности наступления события удовлетворяет условиям , причем значение Р=0 соответствует невозможному событию, а значение Р=1 — достоверному событию.

Вероятность события, заключающегося в выполнении условия (4.1) Р() в теории надежности называется вероятностью безотказной работы. Вместо условия прочности (1) записывается условие

Р()=Р*, (2)

где Р* —заданное достаточно высокое значение вероятности, которое называется нормативной вероятностью безотказной работы. В этом случае говорят, что условие прочности обеспечено с вероятностью Р*.

Естественный способ. Если траектория точки известна заранее, то для определения закона движения точки в пространстве достаточно задать положение точки на ее траектории. С этой целью одну из точек О на траектории принимают за начало отсчета дуговых координат, так как положение движущейся точки М определяется ее ориентированным расстоянием, которое отсчитывается по дуге траектории от выбранной точки отсчета (рис. 36). Следовательно, является функцией времени:

s = s(t).

Уравнение (11.6) определяет закон движения точки по траектории или закон изменения расстояния. Функция s= s (t) должна быть однозначной, непрерывной и дифференцируемой.

За  положительное направление отсчета дуговой координаты s принимают направление движения точки в момент, когда она занимает положение О. следует помнить, что уравнение (11.6) не определяет закон движения точки в пространстве, так как для определения положения точки в пространстве нужно знать еще траекторию точки с начальным положением точки на ней и фиксированное положительное направление. Таким образом, движение точки считается заданным естественным способом, если известна траектория и уравнение (или закон) движения точки по траектории.

Важно заметить, что дуговая координата точки s отлична от пройденного точкой по траектории пути σ. При своем движении точка проходит некоторый путь σ, которой является функцией времени t. Однако пройденный путь σ совпадает с расстоянием s лишь тогда, когда функция

s = s(t) монотонно изменяется со временем, т.е. при движении точки в одном направлении. Допустим, что точка М переходит из М в М. Положению точки в М соответствует время t, а положению точки в М - время t. Разложим промежуток времени t- t на весьма малые промежутки времени Δ t (i = 1,2, …n) так, чтобы в каждый из них точка совершала движение в одном направлении. Соответствующее приращение дуговой координаты обозначим Δ s. Пройденной точкой путь σ будет положительной величиной: σ =

Если движение точки задано координатным способом, то пройденный путь определяется по формуле

σ=

так как

dσ=

где dx=xdt, dy= ydt, dz=zdt.

Следовательно,

dσ = | ds| =.

Лабораторная работа "Изучение конструкции червячного редуктора". Цель работы - ознакомиться с устройством и конструктивными особенностями червячного редуктора и приобрести навыки определения основных геометрических параметров червячного зацепления. Задачи работы: произвести разборку редуктора; отметить особенности конструкции; определить размеры основных элементов червяка и червячного колеса и вычислить значения основных параметров зацепления, согласовав их со стандартными рядами; ознакомиться со способами регулировки зацепления и редуктора; собрать редуктор.
Деформации тела характеризуются изменением взаимного расположения точек тела до и после деформации