Пластические деформации (статическое разрушение)

Наука о прочности, жесткости и надежности элементов инженерных конструкций

Расчет шпоночных и зубчатых соединений. Цель - овладение навыками правильного выбора вида и размеров соединения. Решаемые задачи: подбор и проверочные расчеты шпоночных соединений; подбор и проверочные расчеты зубчатых соединений.

Влияние повышенных температур на характеристики прочности и пластичности можно проследить на рис. 2 и 3, где представлены осредненные результаты экспериментов для 1—углеродистой стали, содержащей 0,15% углерода; 2—0,40% углерода, 3—хромистой стали. Прочность углеродистых сталей с повышением температуры до 650—700oС снижается почти в десять раз. Наиболее резкое снижение наблюдается для алюминиевых сплавов. Наибольшими значениями при высоких температурах обладают литые жаропрочные сплавы, содержащие 70—80% никеля. Снижение пределов текучести с повышением температуры происходит примерно так же, как и снижение . Для углеродистых сталей характерным является ухудшение пластических свойств (охрупчивание) при температурах около 300oС (кривая 2 на рис. 3).



Рис.2. Влияние температуры на упругие свойства



Рис.3. Влияние температуры на пластические свойства

Влияние температур на упругие свойства. Температурный коэффициент линейного расширения и температурный коэффициент модуля упругости связаны между собой соотношением

или

где r и m — постоянные, характеризующие параметры кристаллической решетки. На рис. 4 приведена зависимость безразмерного модуля упругости Е/Е0 некоторых конструкционных материалов от температуры (E0— модуль упругости материала при обычной температуре): 1 — нержавеющая сталь; 2 — алюминиевые сплавы, 3 — углеродистые стали, 4 — титановые сплавы.

Для сталей с повышением температуры испытаний с 25 до 450oС модули упругости Е и G уменьшаются на 20—40%, при этом, начиная с 300—400oС наблюдается расхождение между значениями модулей, определенными при статических и динамических испытаниях.

Изменение модулей упругости при малый колебаниях температуры (от –50 до +50oС) незначительно и им обычно пренебрегают.



Рис.4. Зависимость модуля упругости от температуры

Три способа определения движения точки

Движение точки можно определить тремя способами: векторным, координатным и естественным.

1. Векторный способ. Положение точки можно определить с помощью радиуса-вектора г, проведенного из некоторой заданной неподвижной точки О в данную точку М При движении точки радиус-вектор г изменяется по величине и направлению Каждому моменту времени г соответствует свое значение г. Следовательно, г является функцией времени г:

г = г (t)

Функцию г (t) полагают однозначной, так как рассматриваемая точка М в данный момент времени может находиться только в одном месте пространства Кроме этого г (t) должна быть непрерывной функцией. В большинстве задач механики функция г (t) является Дважды дифференцируемой функцией времени t. Уравнение (11.1) называется кинематическим уравнением движения точки в векторной форме. Это уравнение выражает также закон движения точки, и в векторной форме выражает уравнение траектории точки.

При движении точки конец вектора г движется по траектории. Геометрическое место концов переменного вектора при фиксированной точке их приложения называется годографом («годос» по-гречески — путь, «граф» — описывать). Следовательно, траектория точки является годографом радиуса-вектора г.

2. Координатный способ. Этот способ определения движения точки состоит в том, что задаются координаты точки как функции времени, т. е.

х=х(t),  у = у(t), z = z(t)

Между векторным и координатным способами задания движения точки существует следующая связь:

r=ix+jy+kz

где i,j,k — орты (или единичные векторы), соответственно направленные по осям координат Ох, Оу, Оz.

На том же основании, что и г (t), функции х(t), у(t), z (t) являются однозначными, непрерывными, допускающими непрерывные производные.

Уравнения (П.2) являются уравнением траектории в параметрической форме. Исключая из уравнений (П.2) параметр t, получаем уравнение траектории в явной форме.

Если движение точки задано в полярных координатах

г=г(t), φ = φ(t),

где г — полярный радиус, φ — угол между полярной осью и полярным радиусом, то уравнения (П.4) выражают уравнение траектории точки. Исключив параметр t, получим

г = г(φ).

Лабораторная работа "Изучение конструкции червячного редуктора". Цель работы - ознакомиться с устройством и конструктивными особенностями червячного редуктора и приобрести навыки определения основных геометрических параметров червячного зацепления. Задачи работы: произвести разборку редуктора; отметить особенности конструкции; определить размеры основных элементов червяка и червячного колеса и вычислить значения основных параметров зацепления, согласовав их со стандартными рядами; ознакомиться со способами регулировки зацепления и редуктора; собрать редуктор.
Деформации тела характеризуются изменением взаимного расположения точек тела до и после деформации