Пластические деформации (статическое разрушение)

Наука о прочности, жесткости и надежности элементов инженерных конструкций

Расчет шпоночных и зубчатых соединений. Цель - овладение навыками правильного выбора вида и размеров соединения. Решаемые задачи: подбор и проверочные расчеты шпоночных соединений; подбор и проверочные расчеты зубчатых соединений.

Напряжения, являющиеся верхней границей проявления чисто упругих деформаций, соответствуют точке 2 диаграммы и называются пределом упругости .

Точка 3 диаграммы характерна тем, что при достижении напряжениями величины ( —предел текучести), дальнейшее удлинение образца (для малоуглеродистых сталей) происходит практически без увеличения нагрузки. Это явление носит название текучести, а участок диаграммы, расположенный непосредственно правее точки 3, называется площадкой текучести. При этом полированная поверхность образца мутнеет, докрывается ортогональной сеткой линий (линии Чернова—Людерса), расположенных под углом 45o к продольной оси образца—по направлению плоскостей действия максимальных касательных напряжений.

У многих конструкционных материалов площадка текучести не выражена столь явно, как у малоуглеродистых сталей. Для таких материалов вводится понятие условного предела текучести ; это напряжение, которому соответствует остаточная (пластическая) деформация, равная s %. Обычно принимается s = 0,2%.

После площадки текучести для дальнейшего увеличения деформации необходимо увеличение растягивающей силы. Материал снова проявляет способность сопротивляться деформации; участок за площадкой текучести (до точки 4) называется участком упрочнения. Точка 4 соответствует максимальной нагрузке, выдерживаемой образцом. Соответствующее напряжение называется временным сопротивлением (или пределом прочности ). Дальнейшая деформация образца происходит без увеличения или даже с уменьшением нагрузки вплоть до разрушения (точка 5). Точке 4 на диаграмме соответствует начало локального уменьшения размеров поперечного сечения образца, где, в основном, сосредоточивается вся последующая пластическая деформация.

Диаграмма, приведенная на рис.1, является диаграммой условных напряжений, условность состоит в том, что все силы относились к F0 — первоначальной площади поперечного сечения образца; в действительности же при растяжении площадь поперечного сечения образца уменьшается. Если учитывать текущее значение площади поперечного сечения при определении напряжений, то получим диаграмму истинных напряжений (рис. 2).



Рис.2. Диаграмма истинных напряжений

Если в некоторый момент нагружения (точка А на рис. 1) прекратить нагружение и снять нагрузку, то разгрузка образца пойдет по линии АВ, параллельной линейному участку диаграммы 0 — 1. При этом полная деформация в точке А равна:

где — упругая деформация, — пластическая (остаточная деформация). Уравнение это справедливо для любой точки диаграммы.

После того как материал испытал воздействие осевого усилия одного знака (например, растяжение) в области пластических деформаций сопротивляемость этого материала пластической деформации при действии сил другого знака (сжатие) понижается. Это явление носит название эффекта Баушингера.

Проекции ускорения на оси декартовых координат

Если движение точки задано координатным способом, т. е. уравнениями

x = x(t), y = y(t), z=z(t),

то, раскладывая векторы r, υ и w по ортам координатных осей, получим

r=ix+jy+kz,

υ= iυX+jυY+kυZ,

w=iwX+jwY+kwZ

,где wX,wY,wZ - проекции ускорения на оси координат. На основании предыдущей формулы можно написать iωX+i ωY+k ωZ= iυX+jυY+kυZ

или

iωX+i ωY+k ωZ= ix+jy+kz,

откуда

ω х = υX = x ωу = υу = у, ωZ=υZ= z.

Проекции ускорения на неподвижные оси координат равны первым производным по времени от соответствующих проекций скорости на те же оси или вторым производным по времени от соответствующих координат движущейся точки.

Модуль ускорения

ω==

Направляющие косинусы ускорения соответственно равны

cos(ω^ί)=; cos(ω^ĵ)=; cos(ω^k)=

Лабораторная работа "Изучение конструкции червячного редуктора". Цель работы - ознакомиться с устройством и конструктивными особенностями червячного редуктора и приобрести навыки определения основных геометрических параметров червячного зацепления. Задачи работы: произвести разборку редуктора; отметить особенности конструкции; определить размеры основных элементов червяка и червячного колеса и вычислить значения основных параметров зацепления, согласовав их со стандартными рядами; ознакомиться со способами регулировки зацепления и редуктора; собрать редуктор.
Деформации тела характеризуются изменением взаимного расположения точек тела до и после деформации