Наука о прочности, жесткости и надежности элементов инженерных конструкций

Гидродинамическая смазка - жидкостная смазка, при которой полное разделение трущихся поверхностей происходит в результате давления, возникающего в слое жидкости при относительном движении поверхностей

Способ проверки прочности для каждого из указанных случаев покажем на примерах.

Влияние резонанса на величину напряжений.

Если на балке расположена машина с вращающимся грузом, имеющим эксцентриситет по отношению к оси вращения (Рис.1,). то



Рис.1. Расчетная схема неуравновешенного ротора машины

Сила инерции груза будет вызывать в балке напряжения и деформации, периодически меняющие свой знак. Балка будет совершать колебания с периодом, равным периоду вращения груза. Это будут так называемые вынужденные колебания. Если период вынужденных колебаний совпадет с периодом свободных колебаний стержня, то мы получим явление резонанса, при котором амплитуда (размах) колебаний будет резко расти с течением времени. Наличие сил трения, сопротивление воздуха и т. д. ограничивают на практике рост этой амплитуды; однако она может достичь очень большой величины, значительно превышающей те деформации, которые испытывала бы конструкция под действием ускорений той же величины, но не меняющих знака.

Известен случай, когда при резонансе угол закручивания вала увеличился в шесть раз по сравнению с тем углом, который был до наступления резонанса, — это был случай поломки коленчатых валов двигателей «Цеппелина» при первом его перелете через Атлантический океан.

Таким образом, явление резонанса, если оно длится некоторое время, а не сбивается немедленно по возникновении, ведет к постепенному росту деформаций и пропорциональных им напряжений в конструкции, что может вызвать поломку. Поэтому, как правило, при проектировании конструкций, испытывающих переменные ускорения с постоянным периодом, необходимо избежать возникновения явления резонанса.

Так как период раскачивающих (возмущающих) сил обычно является заданным, то в распоряжении проектировщика остается лишь период собственных свободных колебаний конструкции, который надо подобрать так, чтобы он в должной мере отличался от периода изменений возмущающей силы.

Вопросы, связанные с определением периода, частоты и амплитуды свободных и вынужденных колебаний, рассматриваются в курсах теоретической механики. Поэтому ограничимся лишь приложением полученных там выводов к определению напряжений и проверке прочности элементов конструкции при колебаниях.

Вычисление напряжений при колебаниях.

Упругая система, выведенная каким-либо путем из равновесия, приходит в колебательное движение. Колебания происходят около положения упругого равновесия, при котором в нагруженной системе имели место статические деформации и соответствующие им статические напряжения ( или — в зависимости от вида деформации). При колебаниях к статическим деформациям добавляются динамические, зависящие от вида колебательного движения и от величины размаха (амплитуды) колебаний. В связи с этим изменяются и напряжения . Таким образом, при расчете колеблющейся системы на прочность необходимо уметь вычислять динамические добавки к статическим деформациям и соответствующим им напряжениям.

Во многих случаях характер колебаний системы может быть определен одной какой-нибудь величиной (одной координатой). Такие системы называются системами с одной степенью свободы; таковы, например, растянутая или сжатая незначительного веса пружина с грузом на конце, совершающая продольные колебания; небольшого (сравнительно с грузом Q) собственного веса балка, изображенная на Рис.2, колеблющаяся в направлении, перпендикулярном к ее оси, и т. п.



Рис.2. Динамическая модель колебаний системы с одной степенью свободы. Из основных аксиом статики следуют элементарные операции над силами:

1) силу можно переносить вдоль линии действия;

2) силы, линии действия которых пересекаются, можно складывать по правилу параллелограмма (по правилу сложения векторов);

3) к системе сил, действующих на твёрдое тело, можно всегда добавить две силы, равные по величине, лежащие на одной прямой и направленные в противоположные стороны.

Элементарные операции не изменяют механического состояния системы.

Назовём две системы сил эквивалентными, если одна из другой может быть получена с помощью элементарных операций (как в теории скользящих векторов).

Система двух параллельных сил, равных по величине и направленных в противоположные стороны, называется парой сил (рис.12).

    

Момент пары сил  - вектор, по величине равный площади параллелограмма, построенного на векторах пары, и направленный ортогонально к плоскости пары в ту сторону, откуда вращение, сообщаемое векторами пары, видно происходящим против хода часовой стрелки.

, то есть момент силы  относительно точки В.

При колебаниях систем с одною степенью свободы полные деформации системы в каком либо сечении могут быть найдены путем сложения статической деформации с добавочной деформацией при колебаниях.

Если на упругую систему, кроме груза Q и силы упругого сопротивления системы Р, в том же направлении действует периодически меняющаяся возмущающая сила S и сила сопротивления среды R, то дифференциальное уравнение движения груза Q при колебаниях также может быть представлено в виде уравнения равновесия, подобного уравнению (1): (2) .

Учет массы упругой системы при колебаниях. Если колеблющаяся система, несущая груз Q, обладает довольно значительной распределенной массой (число степеней свободы, следовательно, велико), то упрощенные расчеты, будут иметь уже значительную погрешность.

В качестве первого примера исследуем колебания груза Q, подвешенного к нижнему концу призматического стержня длиной l, площадью поперечного сечения F и удельным весом (Рис. 4).

Предположим, что при колебаниях перемещения всех сечений стержня по отношению к закрепленному концу меняются по тому же закону, что и при статическом растяжении, т. е. пропорционально расстоянию от закрепленного сечения.

Расчет динамического коэффициента при ударной нагрузке. Основные положения. Явление удара получается в том случае, когда скорость рассматриваемой части конструкции или соприкасающихся с ней частей изменяется в очень короткий период времени.

В течение очень короткого промежутка времени упругая система С испытает некоторую деформацию. Обозначим через перемещение тела В (местной деформацией которого пренебрежем) в направлении удара.

Опыты с определением модуля упругости по наблюдениям над упругими колебаниями стержней показывают, что и при динамическом действии нагрузок закон Гука остается в силе, и модуль упругости сохраняет свою величину.

Из этих формул видно, что величина динамических деформаций, напряжений и усилий зависит от величины статической деформации, т. е. от жесткости и продольных размеров ударяемого тела; ниже это дополнительно будет показано на отдельных примерах.

Муфты приводов. Назначение, классификация. Расчетная нагрузка. - Конструкция и расчет фланцевой муфты. - Конструкция и расчет МУВП. - Конструкция и расчет кулачковой муфты. - Конструкция и расчет дисковой фрикционной муфты. - Конструкция и расчет конусной фрикционной муфты. - Конструкция и расчет центробежной муфты. - Конструкция и расчет муфты свободного хода (обгонной). - Работа радиального подшипника скольжения
Способ проверки прочности