Наука о прочности, жесткости и надежности элементов инженерных конструкций

Гидродинамическая смазка - жидкостная смазка, при которой полное разделение трущихся поверхностей происходит в результате давления, возникающего в слое жидкости при относительном движении поверхностей

Предел прочности для шлифованных образцов принят за единицу (прямая 1). Прямая 2 относится к образцам с полированной поверхностью. Прямая 3 — к образцам, имеющим поверхность, обработанную резцом. Прямая 4 дает значения коэффициента качества поверхности, имеющей мелкую насечку, а 5 — относится к поверхности, необработанной после проката. Для поверхностей, корродированных в пресной и морской воде, значения , задаются прямыми 6 и 7.

Коэффициент качества поверхности вводится при расчетах в ординату рабочей точки (р. т.) на диаграмме усталостной прочности. Так, если рассчитанная по номиналу амплитуда цикла равна , то после введения поправки на качество поверхности она принимает значение . Абсцисса рабочей точки остается при этом неизменной, поскольку при постоянных напряжениях качество поверхности на прочность детали влияния не оказывает.

Из всего сказанного видно, что для повышения усталостной прочности необходимо добиваться высокой чистоты поверхности, особенно вблизи очагов концентрации напряжений. Ответственные детали, работающие в тяжелых условиях циклически изменяющихся напряжений, обычно шлифуются и даже полируются.

Большие возможности для повышения усталостной прочности открывают специальные способы обработки поверхности. Сюда относится поверхностное азотирование, которое дает особо ощутимые результаты при наличии концентрации напряжений Предел усталости может быть повышен также путем обкатки поверхности роликами.



Рис.8. График определения масштабного коэффициента.

Особенно большой эффект при наличии очагов концентрации дает дробеструйная обработка поверхности, заключающаяся в обдувке детали чугунной или стальной дробью. В результате такой обработки образуется поверхностный слой с остаточными напряжениями сжатия, что препятствует возникновению местных трещин в дальнейшем.

При расчете детали на усталостную прочность наряду с фактором состояния поверхности необходимо учитывать также еще так называемый масштабный фактор.

Величина предела усталости зависит от абсолютных размеров испытываемых образцов. Объясняется это, как уже указывалось выше, тем, что усталостное разрушение определяется не только напряжением в наиболее опасных точках, но также и общими законами распределения напряжений в объеме тела в процессе образования и развития трещин.

Опыты, проведенные по определению предела усталости для образцов различных размеров, показали, что с увеличением последних предел усталости уменьшается.

Отношение предела усталости детали к пределу усталости образцов стандартного размера называется коэффициентом масштабного фактора, или просто масштабным фактором,

При определении масштабного фактора предполагается, что состояние поверхности испытываемых деталей и образцов одинаково.

На рис. 8 дается ориентировочная зависимость масштабного фактора от диаметра вала для случая изгиба и кручения. Частный случай общей поставки задачи.

Пусть все действующие силы лежат в одной плоскости – например, листа. Выберем за центр приведения точку О – в этой же плоскости. Получим результирующую силу  и результирующую пару  в этой же плоскости, то есть  (рис.19)



   

Замечание.

Систему можно привести к одной результирующей силе.

Условия равновесия:

,  

или скалярные:

Очень часто встречаются в приложениях, например, в сопротивлении материалов.

Муфты приводов. Назначение, классификация. Расчетная нагрузка. - Конструкция и расчет фланцевой муфты. - Конструкция и расчет МУВП. - Конструкция и расчет кулачковой муфты. - Конструкция и расчет дисковой фрикционной муфты. - Конструкция и расчет конусной фрикционной муфты. - Конструкция и расчет центробежной муфты. - Конструкция и расчет муфты свободного хода (обгонной). - Работа радиального подшипника скольжения
Способ проверки прочности