Наука о прочности, жесткости и надежности элементов инженерных конструкций

Гидродинамическая смазка - жидкостная смазка, при которой полное разделение трущихся поверхностей происходит в результате давления, возникающего в слое жидкости при относительном движении поверхностей

Величина теоретического коэффициента концентрации определена для большинства встречающихся на практике типовых конструктивных элементов.



Рис.3. Определение коэффициента концентрации для полосы с отверстием — а), с использованием графика — б)

Данные по величине приводятся в виде таблиц; в справочной литературе по машиностроению. Так, например, на рис. 3 показана зависимость теоретического коэффициента концентрации от соотношения геометрических размеров полосы с отверстием.

Наличие местных напряжений оказывает на прочность детали различное влияние в зависимости от свойств материала и от характера нагружения. В связи с этим в отличие от теоретического вводится понятие эффективного коэффициента концентрации , причем делается различие между постоянными и циклически изменяющимися напряжениями.

При постоянных напряжениях (при r=1) под эффективным коэффициентом концентрации понимается отношение

где —предел прочности для образца, не имеющего очагов концентрации, а —условный предел прочности для образца, обладающего очагами концентрации напряжений.

При испытании, например, призматического стержня с отверстием (рис. 4, а) эффективный коэффициент концентрации напряжений вблизи отверстия определяется отношением разрушающей нагрузки Р к разрушающей нагрузке Р'. То же самое имеет место и для образца с выточкой (рис. 4, б).

Для пластичных материалов местные напряжения в условиях постоянной нагрузки не оказывают на прочность детали существенного влияния. Обычно в зоне повышенных напряжений образуются местные пластические деформации без образования трещины, Весь остальной объем тела за пределами этой зоны работает упруго, и несущая способность сохраняется практически до тех же значений сил, что и при отсутствии очагов концентрации. Это дает право при статическом нагружении не учитывать местных напряжений.



Рис.4. эффект концентрации местных напряжений для детали с отверстием — а) и с выточкой — б)

Таким образом, можно считать, что для пластичных материалов:

Для хрупких материалов значение приближается к значению теоретического коэффициента концентрации . Здесь, правда, возможны исключения. Для чугуна, например, независимо от формы детали, . Объясняется это структурными особенностями чугуна, имеющего в своей массе включения графита. Каждое включение является очагом концентрации, приводящим к существенно большим местным напряжениям, чем те, которые обусловливаются конструктивными факторами (выточками, отверстиями и пр.).

В условиях циклически изменяющихся напряжений (при ) эффективный коэффициент концентрации определяется отношением:

где — предел усталости гладкого образца, а —предел усталости образца, имеющего очаги концентрации напряжений.

Величина , также как и зависит не только от геометрической формы детали, но и от механических свойств материала. Концентрация напряжений существенно сказывается на усталостной прочности и хрупких и пластичных материалов, поскольку и в том и в другом случае при многократном изменении напряжений разрушение начинается с образования местной трещины. Нахождение условий равновесия системы твёрдых тел, находящихся во взаимодействии <=> задача о равновесии каждого тела в отдельности, причём на тело действуют внешние силы и силы внутренние (взаимодействие тел в точках соприкосновения с равными и противоположно направленными силами – аксиома IV, рис.17).

Выберем для всех тел системы один центр приведения. Тогда для каждого тела с номером условия равновесия:

,   ,   ( = 1, 2, …, k)

где ,  - результирующая сила и момент результирующей пары всех сил, кроме внутренних реакций.

,  - результирующая сила и момент результирующей пары сил внутренних реакций.

Формально суммируя по и учитывая по IV аксиоме

получаем необходимые условия равновесия твёрдого тела: 

,

Муфты приводов. Назначение, классификация. Расчетная нагрузка. - Конструкция и расчет фланцевой муфты. - Конструкция и расчет МУВП. - Конструкция и расчет кулачковой муфты. - Конструкция и расчет дисковой фрикционной муфты. - Конструкция и расчет конусной фрикционной муфты. - Конструкция и расчет центробежной муфты. - Конструкция и расчет муфты свободного хода (обгонной). - Работа радиального подшипника скольжения
Способ проверки прочности