Наука о прочности, жесткости и надежности элементов инженерных конструкций

Долговечность - свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

Для построения упрощенной диаграммы достаточно располагать пределом усталости при симметричном цикле , и иметь значения пределов прочности и .

Рабочая точка в плоскости , не может занимать произвольное положение. Она должна находиться в области осуществимых циклов, которая определяется следующими очевидными условиями:

и

Так как:

, а

то область осуществимых циклов имеет верхнюю границу в виде двух прямых:

и

Эти прямые вместе образуют треугольник АСD (рис.3), который и представляет собой область осуществимых циклов.



Рис.3. Область осуществимых циклов



Рис.4. Область допустимых циклов с ограничениями на пластические деформации.

Для пластичных материалов таким же способом может быть отмечена область упругих деформаций. Граница этой области очерчивается сверху прямыми:

и

В результате получаем треугольник (рис. 3).

Если рабочая точка оказывается в пределах этого треугольника» пластические деформации в детали не возникают. Рабочая точка, находящаяся за пределами треугольника А'С'D', но остающаяся внутри треугольника АСD, свидетельствует о том, что в детали возникают пластические деформации. Если, наконец, рабочая точка оказывается за пределами треугольника АСD, при первом же цикле происходит разрушение детали.

При расчетах конструкций, предназначенных на длительные сроки службы, напряжения цикла ограничиваются как по условиям усталостной прочности, так и по условиям недопущения пластических деформаций. Поэтому, объединяя диаграммы, показанные на рис. 2 и 3, получаем рабочую область в виде многоугольника А'КВLС' (рис.4). Рабочая точка (р. т.) исследуемого цикла для рассчитываемой детали должна находиться в пределах указанного многоугольника.

Теперь возникает вопрос, как определить координаты рабочей точки и как определить коэффициент запаса детали в условиях циклического нагружения. Оба эти вопроса содержат в своем решении ряд специфических особенностей, к рассмотрению которых сейчас и перейдем. Аксиома 2. Две силы, приложенные к твёрдому телу, взаимно уравновешиваются тогда и только тогда, когда они равны по величине, направлены в противоположные стороны и лежат на одной прямой.

Аксиома 3. Действие на твёрдое тело системы сил не изменится, если добавить к этой системе или отбросить от неё две силы, равные по величине, направленные в противоположные стороны и лежащие на одной прямой.

Следствие. Силу, действующую на точку твёрдого тела, можно переносить вдоль линии действия силы без изменения равновесия (то есть, сила является скользящим вектором, рис.3)

Рис.3.

Подшипники. Назначение, классификация. Подшипники качения. Классификация, условные обозначения. - Распределение нагрузки между телами качения в подшипнике. - Кинематика и динамика подшипников качения. - Критерии работоспособности и расчета подшипников качения. Расчет на долговечность. - Подшипники скольжения. Область применения. Достоинства и недостатки. - Виды трения в опорах скольжения. Диаграмма Герси - Штрибека. - Критерии работоспособности и расчета подшипников скольжения. Методы расчета.
Способ проверки прочности