Наука о прочности, жесткости и надежности элементов инженерных конструкций

Долговечность - свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

Диаграмма усталостной прочности.

Положим, имеется машина, на которой можно производить усталостные испытания в условиях любого несимметричного цикла. Задавая постоянное значение , находим путем последовательных испытаний образцов такое наибольшее значение амплитуды , при котором материал способен еще выдержать неограниченное число циклов. Если для взятого материала такого предельного напряжения не существует, величина определяется по условному базовому числу N.

В результате проведенной серии испытаний устанавливается предельное значение , соответствующее некоторому напряжению . Полученный результат может быть графически изображен точкой в системе координат , ( рис. 438). Сумма координат этой точки дает предельное максимальное напряжение цикла, т. е. предел усталости , где:

Продолжая такие испытания и дальше, получаем множество точек, через которые проводится предельная кривая, характеризующая прочностные свойства материала в условиях несимметричных циклов. Эта кривая носит название диаграммы усталостной прочности (рис. 1).

Точки А к С диаграммы соответствуют пределам прочности.при простом растяжении и сжатии. Точка В отражает результаты испытания в условиях симметричного цикла.

Полученная диаграмма дает возможность судить о прочности конструкции, работающей при циклически изменяющихся напряжениях.

Положим, для некоторой детали цикл характеризуется значениями напряжений и . Эти величины могут рассматриваться как координаты рабочей точки в плоскости , . Если рабочая точка располагается ниже предельной кривой, рассматриваемая деталь может в условиях циклически изменяющихся напряжений работать неограниченно долго. Если рабочая точка оказывается выше предельной кривой, деталь разрушится после некоторого числа циклов.

Так как построение диаграммы усталостной прочности связано с весьма трудоемкими испытаниями, предпочитают обычно полученную кривую АВС заменять двумя прямыми АВ и ВС, как это отмечено пунктиром на рис. 2. Рабочая область при этом несколько сокращается, что дает погрешность в запас прочности.



Рис.1. Реализация предельного напряжения.



Рис.2. Диаграмма усталостной прочности.

Одновременно отсекается сомнительная зона разброса экспериментальных точек. Идеальные модели материальных тел:

1) материальная точка – геометрическая точка с массой.

2) абсолютно твёрдое тело – совокупность материальных точек, расстояния между которыми не могут быть изменены никакими действиями.

Силами будем называть объективные причины, являющиеся результатом взаимодействия материальных объектов, способные вызвать движение тел из состояния покоя или изменить существующее движение последних.

Так как сила определяется вызываемым ею движением, то она также имеет относительный характер, зависящий от выбора системы отсчёта.

Вопрос о природе сил рассматривается в физике.

Система материальных точек находится в равновесии, если, будучи в покое, она не получает никакого движения от сил, на неё действующих.

Из повседневного опыта: силы имеют векторный характер, то есть величину, направление, линию действия, точку приложения. Условие равновесия сил, действующих на твёрдое тело, сводится к свойствам систем векторов.

Обобщая опыт изучения физических законов природы, Галилей и Ньютон сформулировали основные законы механики, которые могут рассматриваться как аксиомы механики, так как имеют в своей основе экспериментальные факты.

Аксиома 1. Действие на точку твёрдого тела нескольких сил равносильно действию одной равнодействующей силы, строящейся по правилу сложения векторов (рис.2).

Рис.2.

                                         

Следствие.Силы, приложенные к точке твёрдого тела, складываются по правилу параллелограмма.

Подшипники. Назначение, классификация. Подшипники качения. Классификация, условные обозначения. - Распределение нагрузки между телами качения в подшипнике. - Кинематика и динамика подшипников качения. - Критерии работоспособности и расчета подшипников качения. Расчет на долговечность. - Подшипники скольжения. Область применения. Достоинства и недостатки. - Виды трения в опорах скольжения. Диаграмма Герси - Штрибека. - Критерии работоспособности и расчета подшипников скольжения. Методы расчета.
Способ проверки прочности