Наука о прочности, жесткости и надежности элементов инженерных конструкций

Долговечность - свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

Прочность при циклически изменяющихся напряжениях.

Многие детали машин в процессе работы испытывают напряжения, циклически меняющиеся во времени. Так, например ось вагона, вращающаяся вместе с колесами (рис. 1), находятся под действием периодически меняющихся сил и испытывает циклически изменяющиеся напряжения, хотя внешние силы сохраняют свою величину.



Рис.1. Расчетная схема оси вагона.

Для оси вагона на рис. 1 показана эпюра изгибающих моментов. В точке А поперечного сечения (рис. 2, а) имеем:

Расстояние y от точки А до нейтральной оси меняется во времени

где — угловая скорость вращения колеса.

Следовательно,

Таким образом, нормальное напряжение в сечениях оси меняется по синусоиде с амплитудой (рис. 2, б).



Рис.2. Изменение напряжения в точке А.

Опыт показывает, что при переменных напряжениях после некоторого числа циклов может наступить разрушение детали, в то время как при том же неизменном во времени напряжении разрушения не происходит.



Рис.3. Иллюстрация усталостной прочности.

Число циклов до момента разрушения зависит от величины и меняется в весьма широких пределах. При больших напряжениях для разрушения бывает достаточно 5—10 циклов. Это хорошо видно хотя бы на примере многократного изгиба куска проволоки (рис. 3). В теоретической механике изучается движение тел относительно других тел, представляющие собой физические системы отсчёта.

Механика позволяет не только описывать, но и предсказывать движение тел, устанавливая причинные связи в определённом, весьма широком, круге явлений.

Основные абстрактные модели реальных тел:

материальная точка – имеет массу, но не имеет размеров;

абсолютно твёрдое тело – объём конечных размеров, сплошь заполненный веществом, причём расстояния между любыми двумя точками среды, заполняющей объём, не изменяются во время движения;

сплошная деформируемая среда – заполняет конечный объём или неограниченное пространство; расстояния между точками такой среды могут меняться.

Из них – системы:

- система свободных материальных точек;

- системы со связями;

- абсолютно твёрдое тело с полостью, заполненной жидкостью, и т.п.

«Вырожденные» модели:

- бесконечно тонкие стержни;

- бесконечно тонкие пластины;

- невесомые стержни и нити, связывающие между собой материальные точки, и т.д.

При меньших напряжениях деталь выдерживает миллионы и миллиарды циклов, а при еще меньших — способна работать неограниченно долго.

Основные характеристики цикла и предел усталости Рассмотрим вначале случай одноосного напряженного состояния.

Для испытаний в условиях несимметричных циклов используются либо специальные машины, либо же вводятся дополнительные приспособления.

Диаграмма усталостной прочности. Положим, имеется машина, на которой можно производить усталостные испытания в условиях любого несимметричного цикла.

Для построения упрощенной диаграммы достаточно располагать пределом усталости при симметричном цикле , и иметь значения пределов прочности и .

Расчет коэффициентов запаса усталостной прочности. Одним из основных факторов, которые необходимо учитывать при практических расчетах на усталостную прочность, является фактор местных напряжений.

Величина теоретического коэффициента концентрации определена для большинства встречающихся на практике типовых конструктивных элементов.

Числовое значение эффективного коэффициента концентрации может быть определено только на основе усталостного испытания большого числа образцов из различных материалов.

Предел прочности для шлифованных образцов принят за единицу (прямая 1).

Кривая 1 получена для углеродистой стали при отсутствии местных напряжений. Кривая 2—для легированной стали при отсутствии концентрации напряжении и для углеродистой стали при умеренной концентрации.

Основы вибропрочности конструкций Постановка задачи. Явление Резонанса.

Подшипники. Назначение, классификация. Подшипники качения. Классификация, условные обозначения. - Распределение нагрузки между телами качения в подшипнике. - Кинематика и динамика подшипников качения. - Критерии работоспособности и расчета подшипников качения. Расчет на долговечность. - Подшипники скольжения. Область применения. Достоинства и недостатки. - Виды трения в опорах скольжения. Диаграмма Герси - Штрибека. - Критерии работоспособности и расчета подшипников скольжения. Методы расчета.
Способ проверки прочности