Расчет заклепок на смятие и листов на разрыв

Наука о прочности, жесткости и надежности элементов инженерных конструкций

Винтовая зубчатая передача - гиперболоидная передача первого рода, у зубчатых колес которой делительные поверхности цилиндрические.

Явление потери устойчивости при сжатии можно по аналогии иллюстрировать следующим примером из механики твердого тела (рис.2). Будем вкатывать цилиндр на наклонную плоскость ab, которая потом переходит в короткую горизонтальную площадку bс и наклонную плоскость обратного направления cd. Пока мы поднимаем цилиндр по плоскости ab, поддерживая его при помощи упора, перпендикулярного к наклонной плоскости, он будет в.состоянии устойчивого равновесия; на площадке bс его равновесие делается безразличным; стоит же нам поместить цилиндр в точку с, как его равновесие сделается неустойчивым— при малейшем толчке вправо цилиндр начнет двигаться вниз.

Описанную выше физическую картину потери устойчивости сжатым стержнем легко осуществить в действительности в любой механической лаборатории на очень элементарной установке. Это описание не является какой-то теоретической, идеализированной схемой, а отражает поведение реального стержня под действием сжимающих сил.

Потерю устойчивости прямолинейной формы сжатого стержня иногда называют «продольным изгибом», так как она влечет за собой значительное искривление стержня под действием продольных сил. Для проверки на устойчивость сохранился и до сих пор термин «проверка на продольный изгиб», являющийся условным, так как здесь речь должна идти не о проверке на изгиб, а о проверке на устойчивость прямолинейной формы стержня.

Установив понятие о критической силе, как о «разрушающей» нагрузке, выводящей стержень из условий его нормальной работы, мы легко можем составить условие для проверки на устойчивость, аналогичное условию прочности.

Критическая сила вызывает в сжатом стержне напряжение, называемое «критическим напряжением» и обозначаемое буквой . Критические напряжения являются опасными напряжениями для сжатого стержня. Поэтому, чтобы обеспечить устойчивость прямолинейной формы стержня, сжатого силами Р, необходимо к условию прочности добавить еще условие устойчивости:

где — допускаемое напряжение на устойчивость, равное критическому, деленному на коэффициент запаса на устойчивость, т. е. .

Для возможности осуществить проверку на устойчивость мы должны показать, как определять и как выбрать коэффициент запаса .

Формула Эйлера для определения критической силы.

Для нахождения критических напряжений надо вычислить критическую силу , т. е. наименьшую осевую сжимающую силу, способную удержать в равновесии слегка искривленный сжатый стержень.

Эту задачу впервые решил академик Петербургской Академии наук Л. Эйлер в 1744 году.

Заметим, что самая постановка задачи иная, чем во всех ранее рассмотренных отделах курса. Если раньше мы определяли деформацию стержня при заданных внешних нагрузках, то здесь ставится обратная задача: задавшись искривлением оси сжатого стержня, следует определить, при каком значении осевой сжимающей силы Р такое искривление возможно. Принцип возможных перемещений дает в общей форме условия равновесия для любой механической системы, дает общий метод решения задач статики.

Если система имеет несколько степеней свободы, то уравнение принципа возможных перемещений составляют для каждого из независимого перемещений в отдельности, т.е. будет столько уравнений, сколько система имеет степеней свободы.

Общее уравнение динамики  – при движении системы с идеальными связями в каждый данный момент времен сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю. Уравнение использует принцип возможных перемещений и принцип Даламбера и позволяет составить дифференциальные уравнения движения любой механической системы. Дает общий метод решения задач динамики. Последовательность составления: а) к каждому телу прикладывают действующие на него задаваемые силы, а также условно прикладывают силы и моменты пар сил инерции; б) сообщают системе возможные перемещения; в) составляют уравнения принципа возможных перемещений, считая систему находящейся в равновесии.

Уравнения Лагранжа 2-го рода: , (i=1,2…s) – дифференциальные уравнения второго порядка, s – число степеней свободы системы (число независимых координат); qi – обобщенная координата (перемещение, угол, площадь и др.); – обобщенная скорость (линейная скорость, угловая, секторная и др.),

Т = Т(q1,q2,…,qS,,,t) – кинетическая энергия системы, Qi – обобщенная сила (сила, момент и др.), ее размерность зависит от размерности обобщенной координаты и размерности работы.

Рассмотрим прямой стержень постоянного сечения, шарнирно опертый по концам; одна из опор допускает возможность продольного перемещения соответствующего конца стержня (рис.3).

Анализ формулы Эйлера Значениям критической силы высших порядков соответствуют искривления по синусоидам с двумя, тремя и т. д. полуволнами (Рис.1):

Величина постоянной интегрирования а осталась неопределенной; физическое значение ее выяснится, если в уравнении синусоиды положить ; тогда (т. е. посредине длины стержня) получит значение:.

Влияние способа закрепления концов стержня. Формула Эйлера была получена путем интегрирования приближенного дифференциального уравнения изогнутой оси стержня при определенном закреплении его концов (шарнирно-опертых).

Вместо шаровых опор обычно применяются цилиндрические шарниры.

Пределы применимости формулы Эйлера Казалось бы, что полученные в предыдущих параграфах результаты решают задачу проверки сжатого стержня на устойчивость; остается выбрать лишь коэффициент запаса .

Прежде всего надо выделить стержни с малой гибкостью, от 0 примерно до 30—40; у них длина сравнительно невелика по отношению к размерам поперечного сечения.

Для сжатых же стержней, ввиду возможности потери устойчивости, эти обстоятельства могут сильно снизить грузоподъемность стержня.

Подобрать двутавровое сечение стойки с одним защемленным концом, сжатой силами Р = 400 кН; длина стойки l=1,5 м.

Геометрия и кинематика. - Виды разрушений червячных передач. Материалы червячных передач. - Расчет червячных передач по контактным напряжениям. - Расчет червячных передач по напряжениям изгиба. - Тепловой расчет и способы охлаждения червячных передач. - Валы и оси. Расчетные схемы. Критерии работоспособности и расчета. - Расчет валов на прочность и выносливость. - Расчет валов на жесткость и виброустойчивость (колебания).
Расчет балки на упругом основании