Пластические деформации (статическое разрушение)

Наука о прочности, жесткости и надежности элементов инженерных конструкций

Расчет сварных соединений. Студенты знакомятся с различными видами сварных соединений и способами их выполнения, методами расчетов сварных соединений, решают конкретные задачи по расчету сварных соединений, используя сборники задач и справочные материалы. Результаты расчетов проверяются преподавателем.

Понятие о напряжениях и деформациях

Как отмечалось выше, внутренние силы, действующие в некотором сечении со стороны отброшенной части тела, можно привести к главному вектору и главному моменту. Зафиксируем точку М в рассматриваемом сечении с единичным вектором нормали n. В окрестности этой точки выделим малую площадку F. Главный вектор внутренних сил, действующих на этой площадке, обозначим через P (рис. 1 а). При уменьшении размеров площадки соответственно



Рис.1. Композиция вектора напряжения.
а) вектор полного напряжения б) вектор нормального и касательного напряжений

уменьшаются главный вектор и главный момент внутренних сил, причем главный момент уменьшается в большей степени. В пределе при получим

Аналогичный предел для главного момента равен нулю. Введенный таким образом вектор рn называется вектором напряжений в точке. Этот вектор зависит не только от действующих на тело внешних сил и координат рассматриваемой точки, но и от ориентации в пространстве площадки F, характеризуемой вектором п. Совокупность всех векторов напряжений в точке М для всевозможных направлений вектора п определяет напряженное состояние в этой точке.

В общем случае направление вектора напряжений рn не совпадает с направлением вектора нормали п. Проекция вектора рn на направление вектора п называется нормальным напряжением , а проекция на плоскость, проходящую через точку М и ортогональную вектору n, — касательным напряжением (рис. 1 б).

Размерность напряжений равна отношению размерности силы к размерности площади. В международной системе единиц СИ напряжения измеряются в паскалях: 1 Па=1 Н/м2.

При действии внешних сил наряду с возникновением напряжений происходит изменение объема тела и его формы, т. е. тело деформируется. При этом различают начальное (недеформированное) и конечное (деформированное) состояния тела.

Отнесем недеформированное тело к декартовой системе координат Oxyz (рис. 2). Положение некоторой точки М в этой системе координат определяется радиус-вектором r(х, у, z). В деформированном состоянии точка М займет новое положение М/ , характеризуемое радиус-вектором r' (х, у, z). Вектор u=r'—r называется вектором, перемещений точки М. Проекции вектора u на координатные оси определяют компоненты вектора перемещений и(х, у, z), v(х, у, z), w(х, у, z), равные разности декартовых координат точки тела после и до деформации.

Перемещение, при котором взаимное расположение точек тела не меняется, не сопровождается деформациями. В этом случае говорят, что тело перемещается как жесткое целое (линейное перемещение в пространстве или поворот относительно некоторой точки). С другой стороны, деформация, связанная с изменением формы тела и его объема, невозможна без перемещения его точек.



Рис.2. Композиция вектора перемещения

Условия равновесия параллельных сил на плоскости.

  Если силы расположены в одной плоскости и параллельны, например, оси у-ов, то получим:

 Следовательно, для равновесия параллельных сил, расположенных в одной плоскости, необходимо и достаточно, чтобы алгебраическая сумма проекций сил на параллельную им ось и алгебраическая сумма моментов этих сил относительно произвольной точки равнялись нулю.

Условия (1.40) называются также уравнениями равновесия. Для статической определенности задачи число неизвестных сил не долж­но превышать двух.

Условиям равновесия (1.40) можно придать другую форму. Можно составить уравнения моментов сил относительно двух точек А и В:

 

Лабораторная работа "Исследование болтового соединения, работающего на сдвиг". Цель работы - уяснение и экспериментальная проверка теоретических положений, лежащих в основе проектирования болтовых соединений. Соединение состоит из двух пластин и колодки, сжимаемых болтом и гайкой. Определенная величина момента завинчивания гайки обеспечивается динамометрическим ключом
Деформации тела характеризуются изменением взаимного расположения точек тела до и после деформации