Расчет заклепок на смятие и листов на разрыв

Наука о прочности, жесткости и надежности элементов инженерных конструкций

Расчет подшипников скольжения, работающих в условиях жидкостного трения. Расчет соединения врезной клиновой шпонкой

Расчет балки на упругом основании.

Общие понятия.

   К числу статически неопределимых балок может быть отнесена балка на упругом основании. Так называется балка, опирающаяся по всей своей длине (Рис.1) на упругое основание, оказывающее в каждой точке на балку реакцию, пропорциональную у — прогибу балки в этой точке. Коэффициент пропорциональности обозначается буквой k.

   Введение предположения о пропорциональности реакций прогибу является приближением, хотя и достаточно близким к действительным условиям.



Рис.1. Расчетная схема балки на упругом основании.

   Предложение ввести в расчет коэффициент пропорциональности к, именуемый «коэффициентом постели», было впервые сделано русским академиком Николаем Ивановичем Фуссом в 1801 году. Принимая это предположение, получаем, что интенсивность реакции основания в каждой точке сила равна ky и измеряется в единицах силы и длины; размерность коэффициента k при этом будет сила и квадрат длины. Будем считать, что основание оказывает реакцию при прогибах балки как вниз, так и вверх.

   На практике задачи о расчете балки на упругом основании встречаются в железнодорожном деле (рельс, шпала), в строительстве — фундаменты различных сооружений, передающие нагрузку на грунт.

   Статически неопределимой такая балка будет потому, что условие статики— сумма нагрузок равна всей реакции основания — не дает возможности установить распределение этой реакции по длине балки, а значит, вычислить изгибающие моменты и поперечные силы.

   Интенсивность реакции в каждой точке связана с прогибами балки. Поэтому для решения задачи необходимо найти сначала уравнение изогнутой оси , а уже затем формулы для вычисления изгибающего момента и поперечной силы. Ход решения оказывается обратным обычному.

   Найдем уравнение изогнутой оси для балки постоянного сечения, лежащей на упругом основании и нагруженной сосредоточенными силами ... (Рис.1). Начало координат возьмем в любой точке, ось х направим вправо, ось у вертикально вверх. Направление нагрузок вверх будем считать положительным. Напишем обычное дифференциальное уравнение изгиба

   Так как М(х) нам неизвестен, то постараемся связать прогибы непосредственно с нагрузкой, для этого дифференцируем дважды предыдущее уравнение:

(1)

где q(x)—интенсивность сплошной нагрузки, действующей на балку в сечении с абсциссой х.

   Сплошной нагрузкой для нашей балки является лишь реакция упругого основания. Интенсивность ей пропорциональна прогибам; эта нагрузка направлена вверх, т. е. положительна, когда прогибы идут вниз, т. е. отрицательны, и наоборот. Таким образом, эта нагрузка имеет знак, обратный знаку прогибов:

Тогда

(2)

(3)

Если обозначить , то общий интеграл уравнения (25.3) имеет вид: (25.4)

   Постоянные А, В, С, D должны быть определены в каждом частном случае нагрузки и длины балки. Величина имеет измерение обратное длине. Вспомогательные теоремы для определения положения центра тяжести:

Т.1. Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

Т.2. Если однородное тело имеет плоскость симметрии, то его центр тяжести находится в этой плоскости.

Т.3. Объем тела вращения, полученного вращением плоской фигуры вокруг оси, лежащей в плоскости фигуры, но не пересекающей ее, равен произведению площади фигуры на длину окружности, описанной ее центром тяжести, V=2pxcF.

Т.4. Площадь поверхности вращения, полученной вращением плоской кривой вокруг оси, лежащей в плоскости этой кривой, но не пересекающей ее, равна произведению длины этой кривой на длину окружности, описанной ее центром тяжести, F=2pxcL.

Определяя положение центра тяжести плоской фигуры с вырезанной из нее частью, можно считать площадь этой части отрицательной и тогда:   и т.д. — способ отрицательных площадей (объемов).

Расчет бесконечно длинной балки на упругом основании, загруженной одной силой Р.

Разрезав балку сечением в точке О справа от силы Р и рассматривая правую часть балки, видим, что поперечная сита в этом сечении равна реакции основания, действующей на правую половину балки со знаком минус; так как реакция направлена вверх (для правой половины) и вся реакция основания равна Р, значит, поперечная сила в сечении при х = 0 равна .

Энергетические методы расчета деформаций. Постановка задачи .Кроме рассмотренных способов вычисления прогибов и углов поворота сечений балок существует более общий метод, пригодный для определения деформаций любых упругих конструкций. Он основан на применении закона сохранения энергии.

Вычисление потенциальной энергии. При вычислении потенциальной энергии будем предполагать, что деформации не только материала, но и всей конструкции, следуя закону Гука, пропорциональны нагрузкам, т. е. линейно с ними связаны и растут постепенно вместе с ними.

«Соответствие» заключается в том, что речь идет о перемещении того сечения, где приложена рассматриваемая сила, причем о таком перемещении, что произведение его на эту силу дает нам величину работы; для сосредоточенной силы это будет линейное перемещение по направлению действия силы — прогиб, удлинение; для пары сил — это угол поворота сечения по направлению действия пары.

Теорема Кастильяно. Установим теперь метод определения перемещений, основанный на вычислении потенциальной энергии деформации.

Предположим, что мы сначала нагрузили нашу балку грузом ; балка очень немного прогнется (Рис.2, положение III), и прогибы ее в точках 1, 2, 3 будут .

Предыдущий вывод был сделан для балки, но совершенно ясно, что его можно повторить для любой конструкции, деформации которой следуют закону Гука.

Теоремы о взаимности работ и Максвелла — Мора. Пользуясь понятием о потенциальной энергии, можно установить следующую зависимость между деформациями в различных сечениях балки.

Теорема Максвелла—Мора. Прогиб балки в точке приложения сосредоточенной силы Р равен: .

Аналогично, производная изгибающего момента М (х) по паре сил численно представляет собой изгибающий момент от пары с моментом, равным единице, приложенной в том же сечении, где имеется пара , и направленной в ту же сторону.

Наш соотечественник А. Н. Верещагин в 1924 г. предложил упрощение вычислений.

Расчет статически неопределимых балок. Способ сравнения деформаций.

Действительно, добавочная реакция и соответствующее ей добавочное опорное закрепление являются «лишними» только с точки зрения необходимости этих закреплений для равновесия балки как жесткого целого.

Способ сравнения деформаций. Выполняя решение уравнения , названного уравнением совместности деформаций, можно рассуждать следующим образом.

Применение вариационных методов. Раскрытие статической неопределимости для балки, может быть произведено и при помощи теоремы Кастильяно.

Раскрытие статической неопределимости возможно выполнить также и по теореме Мора.

Выбор лишней неизвестной и основной системы.   В предыдущем примере мы выбрали за лишнюю неизвестную реакцию В.

Решение той же основной системы (Рис.4, а) с применением способа Верещагина потребует изображения второго состояния загружения основной системы моментом (Рис.4, б) и построения эпюр изгибающего момента: от заданной нагрузки q (Рис.4, в), от момента (Рис.4, г) и от единичной нагрузки; (Рис.4, д).

Расчет сварного соединения внахлестку, нагруженного силой и крутящим моментом. - Передачи. Классификация, назначение, область применения. - Ременные передачи. Область применения, достоинства и недостатки. Геометрия и кинематика ременных передач. - Силы в ремнях ременных передач. - Напряжения в ремнях ременных передач. - Критерии работоспособности и расчета ременных передач.
Расчет балки на упругом основании