Расчет статически неопределимых систем

Наука о прочности, жесткости и надежности элементов инженерных конструкций

Расчет конических прямозубых колес по их контактным напряжениям. Расчет конических прямозубых колес на усталостный изгиб.

Строится эпюра крутящего момента Мz.

Наибольшие напряжения изгиба возникают в точках k и k/, наиболее удаленных от нейтральной оси (рис. 3),

.

где Wизг — момент сопротивления при изгибе.

В этих же точках имеют место и наибольшие касательные напряжения кручения

,

где Wр— момент сопротивления при кручении.



а) эпюры напряжений б) распределение напряжений
Рис.3. Напряженное состояние вала:

Как следует из рис. 3, напряженное состояние является упрощенным плоским (сочетание одноосного растяжения и чистого сдвига). Если вал выполнен из пластичного материала, оценка его прочности должна быть произведена по одному из критериев текучести. Например, по критерию Треска—Сен-Венана имеем

.

Учитывая, что Wр=2 Wизг, для эквивалентных напряжений получаем

,

где —эквивалентный момент, с введением которого задача расчета вала на совместное действие изгиба и кручения, сводится к расчету на эквивалентный изгиб.

Аналогично для Мэкв по.критерию Губера—Мизеса получаем

Тогда условие прочности для вала из пластичного материала будет иметь вид

.

Для стержня из хрупкого материала условие прочности следует записать в виде

,

где Мэкв должен быть записан применительно к одному из критериев хрупкого разрушения. Например, по критерию Мора

где .

Обратим внимание на особенности расчета при сочетании изгиба, растяжения и кручения стержня прямоугольного поперечного сечения (рис. 4.) Для выявления опасной точки здесь должны быть сравнены напряжения косого изгиба с растяжением в точке А, с эквивалентными напряжениями в точках В и С.



Рис.4. Модель расчета напряжений при сочетании кручения, растяжения и изгиба.

Полученные соотношения приобретают крайнюю необходимость и востребованность при выполнении Вами курсового проекта по основам конструирования при расчете на прочность и жесткость валов передач. Так как по гипотезе К. Э. Циолковского υr = соnst, то величина реактивной силы Ф(1) будет постоянной, а силы Ф(2) — переменной, уменьшающейся по тому же закону, что и масса движущейся точки.

 Таким образом, ускорение  вызванное

силой Ф(1), действующей на точку, переменной массы, будет стечением

времени численно возрастать, а ускорение  будет оставаться постоянным.

 Если F = 0, то υ = υ0. Отсюда получаем закон инерции для точки переменной массы.

  Когда отсутствуют внешние силы, точка переменной массы будет двигаться прямолинейно и равномерно со скоростью υ0 (при υ0≠ 0) или находиться в покое (при υ0= 0), если относительная скорость отделения ее частиц равна нулю, т. ё. υr = 0.

 Если F = 0 и абсолютная скорость отделяющихся частиц и также равна нулю, т. е. при υr = — υ получим

mυ= - υm, или (mυ)=0.

 Интегрируя и обозначая постоянную интегрирования С = m0 υ0,

получим mυ = m0 υ0, откуда

где m0 и υ0 — масса точки и скорость ее в момент t = 0, принятый за начальный.

 Видим, что при отсутствии внешних сил и абсолютной скорости отделения частиц, равной нулю, скорость υ излучающей точки переменной массы увеличивается обратно пропорционально уменьшению массы излучаемой точки.

Расчет затянутого соединения с внецентренной нагрузкой. - Расчет клеммового (фрикционно-винтового) соединения. - - Зубчатые (шлицевые соединения). Классификация, область применения. Способы центрирования. - Расчет зубчатых соединений. - Сварные соединения. Область применения. Расчет сварного соединения встык

Высокий уровень нагружения может вызвать разрушение, т. е. разделение тела на части.