PageMaker Импорт текста

 

Дополнительные возможности фильтров

При установленном в окне импорта флажке Show filter preferences (Показать установки фильтра) после выбора файла для импорта открывается окно дополнительных возможностей фильтра импорта данного формата. (К тому же эффекту приводит нажатие клавиши <Shift> при открытии импортируемого файла.) Окно дополнительных возможностей импорта, разумеется, будет разным для каждого формата. Установки, сделанные в диалоговом окне настройки фильтра, сохраняются до конца текущего сеанса работы с программой PageMaker.

 

Геометрическая симметрия четырёхмерного мира Соображения, опирающиеся на симметрию, играют важную роль в физических, и не только физических исследованиях. Использование имеющихся симметрий существенно упрощает анализ любой ситуации. Пространство, в котором разыгрываются физические события, - наше обычное трёхмерное пространство или четырёхмерный мир, или пространство-время, рассматриваемые в специальной теории относительности, - тоже обладают определённой симметрией. Объясним, - Что это означает? Какой именно симметрией обладает четырёхмерный мир? Идея симметрии пространства возникла из идеи симметрии геометрической фигуры, например, равностороннего треугольника или идеально правильного куба. В частности, куб определённо обладает очень высокой симметрией, и под этим мы понимаем только то, что существуют операции, отличные от тождественной, которые переводят куб сам в себя. Если представить себе, что мы располагаем двумя идентичными экземплярами куба, то можно представить себе мысленно также и “совмещение” этих двух кубов друг с другом при перемещениях и поворотах их в пространстве так, чтобы и вершины, и рёбра, и грани кубов совместились друг с другом. Легко видеть, что такое совмещение можно осуществлять по-разному: повернув предварительно каким-либо определённым образом второй куб перед совмещением его с первым. В частности, второй куб можно совместить с первым, вообще не повёртывая его заранее. Такая операция совмещения называется тождественной. Кроме этой тождественной операции, существуют и другие операции, позволяющие совмещать по-разному повёрнутый предварительно один экземпляр куба с другим его экземпляром. Наличие таких операций, которые называют “операциями симметрии”, позволяющих совмещать геометрическую фигуру саму с собой, свидетельствует о геометрической симметрии рассматриваемой фигуры. Множество операций симметрии геометрической фигуры образуют то, что в математике называют группой симметрии этой фигуры. Чем больше число операций симметрии у геометрической фигуры, тем выше её симметрия. У куба, с учётом тождественной операции, которой обладает любое даже и совсем не симметричное тело, их оказывается 48. У треугольника на плоскости их 3. Может случиться, что множество операций симметрии в группе симметрии фигуры бесконечно. Тогда имеем случай чрезвычайно высокой симметрии. Так, шар в трёхмерном пространстве можно совместить с самим собой, повёртывая его на любой угол относительно любой оси, проходящей через центр шара, число таких поворотов очевидно бесконечно.